A

记得以前做过 当时好像没做对 就是找个子串 满足括号的匹配 []最多的

开两个栈模拟 标记下就行

 #include <iostream>
#include<cstring>
#include<algorithm>
#include<cstdio>
#include<stdlib.h>
#include<cmath>
#include<vector>
#include<queue>
#include<stack>
using namespace std;
#define N 100010
char s[N];
char st[N];
int sn[N][];
int main()
{
int i,k,top=;
cin>>s;
k = strlen(s);
sn[][] = -;sn[][] = -;
for(i = ;i < k ;i++)
{
if(s[i]=='('||s[i]=='[')
{
st[++top] = s[i];
sn[top][] = i;
sn[top][] = ;
sn[top][] = i;
}
else
{
if(s[i]==')')
{
if(top&&st[top]=='(')
{
top--;
sn[top][] += sn[top+][];
sn[top][] = i;
}
else
{
st[++top] = s[i];
sn[top][] = i;
sn[top][] = ;
sn[top][] = i;
}
}
else
{
if(top&&st[top]=='[')
{
top--;
sn[top][] += sn[top+][]+;
sn[top][] = i;
}
else
{
st[++top] = s[i];
sn[top][] = i;
sn[top][] = ;
sn[top][] = i;
}
}
}
}
int maxz=,x=;
for(i = ; i <= top ; i++)
{
if(maxz<sn[i][])
{
maxz = sn[i][];
x = i;
}
}
cout<<maxz<<endl;
for(i = sn[x][]+ ; i <= sn[x][] ; i++)
cout<<s[i];
puts("");
return ;
}

B

这题。。描述的很抽象。 按我的话来说 就是对于每一个s[i]总能找到一个子串包含它 而且与t串相等 t串还必须包含了s串的所有字母

做法:开个标记数组 标记每个字母向前以及向后最大的匹配位置 是否大于等于t串的长度

 #include <iostream>
#include<cstring>
#include<algorithm>
#include<cstdio>
#include<stdlib.h>
#include<cmath>
#include<vector>
#include<queue>
#include<stack>
using namespace std;
#define N 200010
char s[N],t[N];
int o[N],f[],w[N];
int main()
{
int i,j,k,tk;
while(cin>>s)
{
memset(o,,sizeof(o));
memset(w,,sizeof(w));
memset(f,,sizeof(f));
k = strlen(s);
cin>>t;
tk = strlen(t);
for(i = tk- ; i >= ; i--)
{
f[t[i]-'a'] = ;
}
for(i = k- ; i >= ; i--)
{
if(!f[s[i]-'a']) break;
}
if(i!=-||s[]!=t[])
{
puts("No");
continue;
}
j = ;
for(i = ; i < k ;i++)
{
if(s[i]==t[j])
{
j++;
o[i] = j;
f[s[i]-'a'] = j;
}
else
{
o[i] = f[s[i]-'a'];
}
}
memset(f,,sizeof(f));
j = tk-;
for(i = k- ; i >= ;i--)
{
if(s[i]==t[j])
{
j--;
w[i] = tk--j;
f[s[i]-'a'] = tk--j;
}
else
{
w[i] = f[s[i]-'a'];
}
}
for(i = ; i < k ;i++)
{
if(o[i]+w[i]<=tk) break;
//cout<<o[i]<<" "<<w[i]<<endl;
}
if(i==k)
puts("Yes");
else puts("No");
}
return ;
}

C 数论题

无奈数论太差 研究题解研究了好久。。可以推公式 我把具体的推法写一下 具体公式是对于第i个数来说 k次转换的结果 是 c(k+j-1,j)个a[j]之和 (j<=i) 就是当前的数 是由多个个a[j]组成的

比如 a[i]都为1  n为5 吧  初始为 1 1 1 1 1

就可以推了 k=1时  第一个数  1     =1           k = 2  第一个数  1     =1                                 ===》 1

         第二个数   1 1 (代表1个a[1] 1个a[j]) =2                 第二个数   2 1          (代表2个a[1] 1个a[j]) =3      ===》  3 1

         第三个数   1 1 1          = 3      +(2,1)  ===>            第三个数   3 2 1          = 6                                ===》  6 3 1

         第四个数 1 1 1 1        = 4      +(3,2,1) ====>        第四个数 4 3 2 1        = 10                                  ====》 10 6 3 1

         第五个数   1 1 1 1 1      =5      +(4,3,2,1)====>      第五个数   5 4 3 2 1     = 15                                =====》  15 10 6 3 1

差不多基本可以看下了 题解说可以看出规律为。。。 说实话我没看出来。。。  不过我验证了它的规律。。。 对于k此操作 对应的用去a[j]的个数 为o[j] = c(k+j-1,j);

注意这里不要用反  例如上面最后一组 是15个a[0] 10个a[1]..1个a[4]

另外一些数论的知识 因为涉及到组合数 又涉及到取余 所以涉及到了逆元  对于除法的逆元  a/b = ab^-1%mod   b^-1为其逆元

逆元又涉及到一递推公式  i的逆元 nv[i]=(-MOD/i*nv[MOD%i]);    验证:两边同乘i nv[i]*i = (-mod/i*nv[mod%i])*i;     逆元性质 a*nv[a]%MOD=1 1 = (-mod/i)*i*1/(mod%i)

so i*(-MOD/i) == (MOD%i)%MOD

-(MOD-MOD%i) == (MOD%i)%MOD  这个式子显然成立  证完

 #include <iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<stdlib.h>
#include<vector>
#include<cmath>
#include<queue>
#include<set>
using namespace std;
#define N 2010
const double eps = 1e-;
const double pi = acos(-1.0);
const double inf = ~0u>>;
#define LL long long
#define mod 1000000007
LL a[N],v[N],o[N];
LL cn(int n,int m)
{
int i;
LL s = ;
for(i = ; i <= m ;i++)
{
s = ((s*v[i])%mod*(n-i+))%mod;//除法取余 乘其逆元
}
return s;
}
int main()
{
int i,j,n,k;
cin>>n>>k;
for(i = ; i < n ; i++)
cin>>a[i];
if(k==)
{
for(i = ; i< n ;i++)
cout<<a[i]<<" ";
puts("");
return ;
}
v[] = v[] = ;
for(i = ; i < n ; i++)
v[i] = ((-mod/i*v[mod%i])%mod+mod)%mod;
for(i = ; i < n ;i++)
{
o[i] = cn(i+k-,i);
}
for(i = ; i < n; i++)
{
LL ans=;
for(j = ; j <= i ; j++)
ans=(ans+a[j]*o[i-j])%mod;
cout<<ans<<" ";
}
puts("");
return ;
}

Codeforces Round #138 (Div. 1)的更多相关文章

  1. Codeforces Round #138 (Div. 2)

    A. Parallelepiped 枚举其中一边,计算其他两条边. B. Array 模拟. C. Bracket Sequence 栈. D. Two Strings \(pre[i]\)表示第i个 ...

  2. Codeforces Round #138 (Div. 2) ACBDE

    A.Parallelepiped 题意:给一个六面体三面的面积,求12条边的长度和. 题解:因为都是整数,设边长分别为a,b,c,面积为xyz,那么可设x=a*b,y=b*c,z=c*a,简单解方程就 ...

  3. Codeforces Round #138 (Div. 2) A. Parallelepiped

    A. Parallelepiped time limit per test 2 seconds memory limit per test 256 megabytes input standard i ...

  4. Codeforces Round #366 (Div. 2) ABC

    Codeforces Round #366 (Div. 2) A I hate that I love that I hate it水题 #I hate that I love that I hate ...

  5. Codeforces Round #354 (Div. 2) ABCD

    Codeforces Round #354 (Div. 2) Problems     # Name     A Nicholas and Permutation standard input/out ...

  6. Codeforces Round #368 (Div. 2)

    直达–>Codeforces Round #368 (Div. 2) A Brain’s Photos 给你一个NxM的矩阵,一个字母代表一种颜色,如果有”C”,”M”,”Y”三种中任意一种就输 ...

  7. cf之路,1,Codeforces Round #345 (Div. 2)

     cf之路,1,Codeforces Round #345 (Div. 2) ps:昨天第一次参加cf比赛,比赛之前为了熟悉下cf比赛题目的难度.所以做了round#345连试试水的深浅.....   ...

  8. Codeforces Round #279 (Div. 2) ABCDE

    Codeforces Round #279 (Div. 2) 做得我都变绿了! Problems     # Name     A Team Olympiad standard input/outpu ...

  9. Codeforces Round #262 (Div. 2) 1003

    Codeforces Round #262 (Div. 2) 1003 C. Present time limit per test 2 seconds memory limit per test 2 ...

随机推荐

  1. Scrum 时间估算

    在新公司里,不懂软件工程的产品经理经常逼迫研发人员作出很不靠谱的时间估算.常见场景有下面这些: 需求未细化的情况下要求给出时间估算:比如,就一句话描述需要做一个什么样的功能,但是具体页面长什么样,交互 ...

  2. 【Mongodb教程 第七课 】MongoDB 查询文档

    find() 方法 要从MongoDB 查询集合数据,需要使用MongoDB 的 find() 方法. 语法 基本的find()方法语法如下 >db.COLLECTION_NAME.find() ...

  3. [CSAPP]Bufbomb实验报告

    Bufbomb实验报告 实验分析: level 0-3从test開始制运行,通过函数getbuf向外界读取一串内容(buf). Level 4 是通过參数-n,程序运行testn函数,调用getbuf ...

  4. C语言变长数组data[0]总结

    C语言变长数组data[0] 1.前言 今天在看代码中遇到一个结构中包含char data[0],第一次见到时感觉很奇怪,数组的长度怎么可以为零呢?于是上网搜索一下这样的用法的目的,发现在linux内 ...

  5. CocoaPoda在iOS开发中的使用

    CocoaPoda在iOS开发中的使用 CocoaPods 简介 CocoaPods是iOS开发中不可避免的依赖管理第三方的工具,能简化一些第三方库文件需要添加编译参数及依赖库的繁复工作 CocoaP ...

  6. Attribute(特性)

    一向都觉得.NET的Attribute好神秘.一个方框框住的东西,置身于类.方法的头部,本身不在类或方法里面,但又会起作用,有时作用还很大,仿佛充满了魔力.简直给人一种无冕之王,幕后之黑手的感觉! 某 ...

  7. is和==的区别,小数据池,编码

    1   is  和  == 的区别 1>    id( )表示我们可以通过它来查到在内存中的地址 s = "alex" lst = [1,2, 4] lst = [1, 2, ...

  8. scala wordcount kmeans

    scala wordcount   kmeans k-means算法的输入对象是d维向量空间的一些点,对一个d维向量的点集进行聚类. k-means聚类算法会将集合D划分成k个聚簇.

  9. HTML5你必须知道的28个新特性

    1. 新的Doctype 尽管使用<!DOCTYPE html>,即使浏览器不懂这句话也会按照标准模式去渲染 2. Figure元素 用<figure>和<figcapt ...

  10. 8088汇编跳转和PSW状态字寄存器

    DDD 8088 汇编跳转 日期:2003年6月12日  出处:嬴政天下整理收藏  作者:看雪  人气: 8735 8088 汇编跳转 一.状态寄存器 PSW(Program Flag)程序状态字寄存 ...