Discrete Logging
Time Limit: 5000MS   Memory Limit: 65536K
Total Submissions: 5865   Accepted: 2618

Description

Given a prime P, 2 <= P < 231, an integer B, 2 <= B < P, and an integer N, 1 <= N < P, compute the discrete logarithm of N, base B, modulo P. That is, find an integer L such that

    B

L

 == N (mod P)

Input

Read several lines of input, each containing P,B,N separated by a space.

Output

For each line print the logarithm on a separate line. If there are several, print the smallest; if there is none, print "no solution".

Sample Input

5 2 1
5 2 2
5 2 3
5 2 4
5 3 1
5 3 2
5 3 3
5 3 4
5 4 1
5 4 2
5 4 3
5 4 4
12345701 2 1111111
1111111121 65537 1111111111

Sample Output

0
1
3
2
0
3
1
2
0
no solution
no solution
1
9584351
462803587

Hint

The solution to this problem requires a well known result in number theory that is probably expected of you for Putnam but not ACM competitions. It is Fermat's theorem that states

   B

(P-1)

 == 1 (mod P)

for any prime P and some other (fairly rare) numbers known as base-B
pseudoprimes. A rarer subset of the base-B pseudoprimes, known as
Carmichael numbers, are pseudoprimes for every base between 2 and P-1. A
corollary to Fermat's theorem is that for any m

   B

(-m)

 == B

(P-1-m)

 (mod P) .

Source

BSGS模板题
 
 #include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<map>
#define LL long long
using namespace std;
LL a,b,c;
map<LL,LL>mp;
LL fastpow(LL a,LL p,LL c)
{
LL base=a;LL ans=;
while(p!=)
{
if(p%==)ans=(ans*base)%c;
base=(base*base)%c;
p=p/;
}
return ans;
}
int main()
{
// a^x = b (mod c)
while(scanf("%lld%lld%lld",&c,&a,&b)!=EOF)
{
LL m=ceil(sqrt(c));// 注意要向上取整
mp.clear();
if(a%c==)
{
printf("no solution\n");
continue;
}
// 费马小定理的有解条件
LL ans;//储存每一次枚举的结果 b* a^j
for(LL j=;j<=m;j++) // a^(i*m) = b * a^j
{
if(j==)
{
ans=b%c;
mp[ans]=j;// 处理 a^0 = 1
continue;
}
ans=(ans*a)%c;// a^j
mp[ans]=j;// 储存每一次枚举的结果
}
LL t=fastpow(a,m,c);
ans=;//a ^(i*m)
LL flag=;
for(LL i=;i<=m;i++)
{
ans=(ans*t)%c;
if(mp[ans])
{
LL out=i*m-mp[ans];// x= i*m-j
printf("%lld\n",(out%c+c)%c);
flag=;
break;
} }
if(!flag)
printf("no solution\n");
} return ;
}

Discrete Logging的更多相关文章

  1. 【BSGS】BZOJ3239 Discrete Logging

    3239: Discrete Logging Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 729  Solved: 485[Submit][Statu ...

  2. poj 2417 Discrete Logging ---高次同余第一种类型。babystep_gaint_step

    Discrete Logging Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 2831   Accepted: 1391 ...

  3. BSGS算法+逆元 POJ 2417 Discrete Logging

    POJ 2417 Discrete Logging Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 4860   Accept ...

  4. POJ 2417 Discrete Logging (Baby-Step Giant-Step)

    Discrete Logging Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 2819   Accepted: 1386 ...

  5. POJ2417 Discrete Logging【BSGS】

    Discrete Logging Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 5577   Accepted: 2494 ...

  6. 【BZOJ3239】Discrete Logging BSGS

    [BZOJ3239]Discrete Logging Description Given a prime P, 2 <= P < 231, an integer B, 2 <= B ...

  7. [POJ2417]Discrete Logging(指数级同余方程)

    Discrete Logging Given a prime P, 2 <= P < 2 31, an integer B, 2 <= B < P, and an intege ...

  8. BSGS 扩展大步小步法解决离散对数问题 (BZOJ 3239: Discrete Logging// 2480: Spoj3105 Mod)

    我先转为敬? orz% miskcoo 贴板子 BZOJ 3239: Discrete Logging//2480: Spoj3105 Mod(两道题输入不同,我这里只贴了3239的代码) CODE ...

  9. POJ 2417 Discrete Logging ( Baby step giant step )

    Discrete Logging Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 3696   Accepted: 1727 ...

随机推荐

  1. [转] 买彩票的利器--gun

    源链接 还在自己买彩票吗,有个现成的:GNU shuf命令. shuf -i - -n | 这样就会产生两组彩票(1~36个数字任选) 当然还可以派其他用途,比如: shuf -e clubs hea ...

  2. 4 Ionic导航和核心组件--旅游应用

    简介:在本节课中,我们将会通过一个虚构的旅游景点来构建一款功能完善的应用.本应用的核心特性是管理用户的应用内导航.本节课的主要目的,是展现构建一个完整的应用的过程. 无论是什么移动应用,最重要的功能之 ...

  3. 2016/3/27 分页 共X条数据 本页x条 本页从x-y条 x/y页 首页 上一页 123456 下一页 末页 pagego echo $page->fpage(7,6,5,4,3,2,1,0);

    显示效果: fpage.class.php <?php /** file: page.class.php 完美分页类 Page */ class Page { private $total; / ...

  4. 调参侠的末日? Auto-Keras 自动搜索深度学习模型的网络架构和超参数

    Auto-Keras 是一个开源的自动机器学习库.Auto-Keras 的终极目标是允许所有领域的只需要很少的数据科学或者机器学习背景的专家都可以很容易的使用深度学习.Auto-Keras 提供了一系 ...

  5. Virtual IP address

    https://en.wikipedia.org/wiki/Virtual_IP_address Virtual IP address From Wikipedia, the free encyclo ...

  6. eclipse中jsp页面乱码问题

    若上述位置均改为utf-8之后,页面展示扔为乱码,检查jsp页面是否有编码说明

  7. oracle 建表 主键自增序列/////

    oracle 建表 主键自增序列 (2011-10-12 11:59:22) 转载▼ 标签: 杂谈 分类: oracle SQL> create table sms_activity(  2   ...

  8. [Codeforces 507E] Breaking Good

    [题目链接] https://codeforces.com/contest/507/problem/E [算法] 首先BFS求出1到其余点的最短路 , N到其余点的最短路,记为distA[]和dist ...

  9. apache服务器本质

    apache服务器本质上说是一个TCP socket服务,socket模型如下: 下面以worker MPM来说明apache代码中相应处理的位置在哪里: (以apache httpd 2.2.23版 ...

  10. less 使用入门

    LESSS是基于JavaScript,所以,是在客户端处理的. 使用less很简单: 1 下载less.js 2 新建less文件后缀名称是.less 3 在页面中引入less文件,跟引入普通的css ...