D. Complete The Graph

time limit per test: 4 seconds
memory limit per test: 256 megabytes
input: standard input
output: standard output

ZS the Coder has drawn an undirected graph of n vertices numbered from 0 to n - 1 and m edges between them. Each edge of the graph is weighted, each weight is a positive integer.

The next day, ZS the Coder realized that some of the weights were erased! So he wants to reassign positive integer weight to each of the edges which weights were erased, so that the length of the shortest path between vertices s and t in the resulting graph is exactly L. Can you help him?

Input

The first line contains five integers n, m, L, s, t (2 ≤ n ≤ 1000,  1 ≤ m ≤ 10 000,  1 ≤ L ≤ 109,  0 ≤ s, t ≤ n - 1,  s ≠ t) — the number of vertices, number of edges, the desired length of shortest path, starting vertex and ending vertex respectively.

Then, m lines describing the edges of the graph follow. i-th of them contains three integers, ui, vi, wi(0 ≤ ui, vi ≤ n - 1,  ui ≠ vi,  0 ≤ wi ≤ 109). ui and vi denote the endpoints of the edge and wi denotes its weight. If wi is equal to 0 then the weight of the corresponding edge was erased.

It is guaranteed that there is at most one edge between any pair of vertices.

Output

Print "NO" (without quotes) in the only line if it's not possible to assign the weights in a required way.

Otherwise, print "YES" in the first line. Next m lines should contain the edges of the resulting graph, with weights assigned to edges which weights were erased. i-th of them should contain three integers uivi and wi, denoting an edge between vertices ui and vi of weight wi. The edges of the new graph must coincide with the ones in the graph from the input. The weights that were not erased must remain unchanged whereas the new weights can be any positive integer not exceeding 1018.

The order of the edges in the output doesn't matter. The length of the shortest path between s and t must be equal to L.

If there are multiple solutions, print any of them.

Examples

input
5 5 13 0 4
0 1 5
2 1 2
3 2 3
1 4 0
4 3 4
output
YES
0 1 5
2 1 2
3 2 3
1 4 8
4 3 4
input
2 1 999999999 1 0
0 1 1000000000
output
NO

Note

Here's how the graph in the first sample case looks like :

In the first sample case, there is only one missing edge weight. Placing the weight of 8 gives a shortest path from 0 to 4 of length 13.

In the second sample case, there is only a single edge. Clearly, the only way is to replace the missing weight with 123456789.

In the last sample case, there is no weights to assign but the length of the shortest path doesn't match the required value, so the answer is "NO".

Understanding

给一个无向图,有一些权值为0的边要重构成正数权值,使得s→t的最短路为l

Solution

特判掉原本最短路(没有加入0边)<l→"NO"

分析一下,s→t的最短路,贪心,加入0边,先不管取值,先一条条赋为1(最小positive integer),如果当前最短路<l是不是说明当前这条边是最短路的一部分,所以答案就出来了,将这条边赋值为l-d[t]+1,如果最短路仍>l,而这已经是这条边的最优贡献,所以赋值为1继续做.

然后注意一下细节即可(WA了4发~~)

复杂度:O(nmlogn)(优化:对了,每次做最短路,当前值已经>l可以直接退出,所以其实跑得很快296MS)

// This file is made by YJinpeng,created by XuYike's black technology automatically.
// Copyright (C) 2016 ChangJun High School, Inc.
// I don't know what this program is. #include <iostream>
#include <vector>
#include <algorithm>
#include <cstring>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <queue>
#define IN inline
#define RG register
#define MOD 1000000007
#define INF 1e9+1
using namespace std;
typedef long long LL;
const int MAXN=1010;
const int MAXM=20010;
inline int gi() {
register int w=0,q=0;register char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')q=1,ch=getchar();
while(ch>='0'&&ch<='9')w=w*10+ch-'0',ch=getchar();
return q?-w:w;
}
int tot,cnt,S[MAXM],T[MAXM];
struct Dijskra{
static const int N=1010,M=(N*10)<<1;
int n,t,l;int d[N],fr[N];int to[M],ne[M],be[M],W[M];bool u[N];
struct node{
int s,p;
bool operator<(node a)const{return s>a.s;}
};
priority_queue<node>q;
IN void link(RG int u,RG int v,RG int w){
//if(w>l)return; this some edges didn't get
to[++t]=v;ne[t]=fr[u];fr[u]=t;W[t]=w;be[t]=u;
}
int Dij(int begin,int end){
for(int i=0;i<n;i++)d[i]=INF;
q.push((node){d[begin]=0,begin});memset(u,0,sizeof(u));
while(!q.empty()){
while(u[q.top().p]&&!q.empty())q.pop();
if(q.empty())break;
int x=q.top().p;q.pop();u[x]=1;
if(x==end||d[x]>l)break;
for(int o=fr[x],y;y=to[o],o;o=ne[o])
if(d[x]+W[o]<d[y]&&d[x]+W[o]<=l){
d[y]=d[x]+W[o];
q.push((node){d[y],y});
}
}
return d[end];
}
void pri(int end){
printf("YES\n");
for(int i=1;i<t-1;i+=2)
printf("%d %d %d\n",be[i],to[i],W[i]);
printf("%d %d %d\n",be[t-1],to[t-1],l-d[end]+W[t-1]);//this W[t-1]
for(int i=tot;i<=cnt;i++)printf("%d %d %d\n",S[i],T[i],(int)INF);exit(0);
}
}e;
int main()
{
freopen("D.in","r",stdin);
freopen("D.out","w",stdout);
int n=gi(),m=gi(),l=gi(),s=gi(),t=gi();e.l=l;e.n=n;
for(int i=1;i<=m;i++){
int u=gi(),v=gi(),w=gi();
if(w)e.link(u,v,w),e.link(v,u,w);
else S[++cnt]=u,T[cnt]=v;
}tot=1;//this
if(e.Dij(s,t)<l){printf("NO");return 0;}
if(e.d[t]==l)e.pri(t);
for(;tot<=cnt;tot++){
e.link(S[tot],T[tot],1);e.link(T[tot],S[tot],1);
if(e.Dij(s,t)<=l)break;
}tot++;
if(tot>cnt+1)return 0*puts("NO");
e.pri(t);
return 0;
}

【Codeforces】716D Complete The Graph的更多相关文章

  1. Codeforces 715B & 716D Complete The Graph 【最短路】 (Codeforces Round #372 (Div. 2))

    B. Complete The Graph time limit per test 4 seconds memory limit per test 256 megabytes input standa ...

  2. 【CodeForces】915 D. Almost Acyclic Graph 拓扑排序找环

    [题目]D. Almost Acyclic Graph [题意]给定n个点的有向图(无重边),问能否删除一条边使得全图无环.n<=500,m<=10^5. [算法]拓扑排序 [题解]找到一 ...

  3. 【Codeforces】Round #491 (Div. 2) 总结

    [Codeforces]Round #491 (Div. 2) 总结 这次尴尬了,D题fst,E没有做出来.... 不过还好,rating只掉了30,总体来说比较不稳,下次加油 A:If at fir ...

  4. 【Codeforces】Round #488 (Div. 2) 总结

    [Codeforces]Round #488 (Div. 2) 总结 比较僵硬的一场,还是手速不够,但是作为正式成为竞赛生的第一场比赛还是比较圆满的,起码没有FST,A掉ABCD,总排82,怒涨rat ...

  5. 【CodeForces】841D. Leha and another game about graph(Codeforces Round #429 (Div. 2))

    [题意]给定n个点和m条无向边(有重边无自环),每个点有权值di=-1,0,1,要求仅保留一些边使得所有点i满足:di=-1或degree%2=di,输出任意方案. [算法]数学+搜索 [题解] 最关 ...

  6. 【CodeForces】601 D. Acyclic Organic Compounds

    [题目]D. Acyclic Organic Compounds [题意]给定一棵带点权树,每个点有一个字符,定义一个结点的字符串数为往下延伸能得到的不重复字符串数,求min(点权+字符串数),n&l ...

  7. 【Codeforces】849D. Rooter's Song

    [算法]模拟 [题意]http://codeforces.com/contest/849/problem/D 给定n个点从x轴或y轴的位置p时间t出发,相遇后按对方路径走,问每个数字撞到墙的位置.(还 ...

  8. 【CodeForces】983 E. NN country 树上倍增+二维数点

    [题目]E. NN country [题意]给定n个点的树和m条链,q次询问一条链(a,b)最少被多少条给定的链覆盖.\(n,m,q \leq 2*10^5\). [算法]树上倍增+二维数点(树状数组 ...

  9. 【CodeForces】925 C.Big Secret 异或

    [题目]C.Big Secret [题意]给定数组b,求重排列b数组使其前缀异或和数组a单调递增.\(n \leq 10^5,1 \leq b_i \leq 2^{60}\). [算法]异或 为了拆位 ...

随机推荐

  1. 笔试算法题(24):找出出现次数超过一半的元素 & 二叉树最近公共父节点

    出题:数组中有一个数字出现的次数超过了数组长度的一半,请找出这个数字: 分析: 解法1:首先对数组进行排序,时间复杂度为O(NlogN),由于有一个数字出现次数超过了数组的一半,所以如果二分数组的话, ...

  2. group 和 gshadow

    group组文件 位置:/etc/group 作用:存放用户的分组信息 使用 /etc/group 命令查看时,得到的数据如下: 分析上图,可以得到以下结果 第1个字段:组名 默认组名与用户名名称一样 ...

  3. laydate组件选择时间段的判断

    前言: 在使用laydate组件的时候,难免会遇到选择时间段,官网给的文档中有选择时间段的组件,但是并不好用,首先只能选择一个月的时间段,有局限性,其次精确到时间的话要先选日期范围再选时间范围,很变态 ...

  4. STL优先队列重载

    priority_queue默认是大根堆,如果需要使用小根堆,如下 int main(){ priority_queue<int,vector<int>,greater<int ...

  5. 2017 GDCPC 省赛总结

    第一年参加省赛,也是我接触acm半年多的第一个正式省级赛事,这半年来我为acm付出的可能很多,但经历过这次省赛后,给我唯一的感觉就是,还不够多. 直接分析题目吧,开始拿到试题后我读的是A题,然后我的队 ...

  6. MVC系统学习6—Filter

    Mvc的过滤器是特性类,可以使我们在执行Action之前,执行Action之后,执行Action发生异常时,编写相关的处理代码实现某些逻辑.下面是四个基本的Filter接口. 上面这四个基本的Filt ...

  7. linux 下CPU数量、核心数量、是否支持超线程的判断

    判断依据:1.具有相同core id的cpu是同一个core的超线程.2.具有相同physical id的cpu是同一颗cpu封装的线程或者cores. 英文版:1.Physical id and c ...

  8. ie下php session不能用(域名的合法定义)

    今天遇到了一个奇怪的问题.应用程序的后台ie下居然无法登陆,老是提示验证码不正确,明明输入是正确的.于是抓包.测试.调试,最终发现罪魁祸首phpsessionid在ie下没有办法写入.研究了一下,发现 ...

  9. CF676E:The Last Fight Between Human and AI

    人类和电脑在一个多项式上进行博弈,多项式的最高次项已知,一开始系数都不确定.电脑先开始操作,每次操作可以确定某次项的系数,这个系数可以是任意实数.给出一个博弈中间状态,最后如果这个多项式被x-K整除就 ...

  10. 289. Game of Live

    According to the Wikipedia's article: "The Game of Life, also known simply as Life, is a cellul ...