D. Complete The Graph

time limit per test: 4 seconds
memory limit per test: 256 megabytes
input: standard input
output: standard output

ZS the Coder has drawn an undirected graph of n vertices numbered from 0 to n - 1 and m edges between them. Each edge of the graph is weighted, each weight is a positive integer.

The next day, ZS the Coder realized that some of the weights were erased! So he wants to reassign positive integer weight to each of the edges which weights were erased, so that the length of the shortest path between vertices s and t in the resulting graph is exactly L. Can you help him?

Input

The first line contains five integers n, m, L, s, t (2 ≤ n ≤ 1000,  1 ≤ m ≤ 10 000,  1 ≤ L ≤ 109,  0 ≤ s, t ≤ n - 1,  s ≠ t) — the number of vertices, number of edges, the desired length of shortest path, starting vertex and ending vertex respectively.

Then, m lines describing the edges of the graph follow. i-th of them contains three integers, ui, vi, wi(0 ≤ ui, vi ≤ n - 1,  ui ≠ vi,  0 ≤ wi ≤ 109). ui and vi denote the endpoints of the edge and wi denotes its weight. If wi is equal to 0 then the weight of the corresponding edge was erased.

It is guaranteed that there is at most one edge between any pair of vertices.

Output

Print "NO" (without quotes) in the only line if it's not possible to assign the weights in a required way.

Otherwise, print "YES" in the first line. Next m lines should contain the edges of the resulting graph, with weights assigned to edges which weights were erased. i-th of them should contain three integers uivi and wi, denoting an edge between vertices ui and vi of weight wi. The edges of the new graph must coincide with the ones in the graph from the input. The weights that were not erased must remain unchanged whereas the new weights can be any positive integer not exceeding 1018.

The order of the edges in the output doesn't matter. The length of the shortest path between s and t must be equal to L.

If there are multiple solutions, print any of them.

Examples

input
5 5 13 0 4
0 1 5
2 1 2
3 2 3
1 4 0
4 3 4
output
YES
0 1 5
2 1 2
3 2 3
1 4 8
4 3 4
input
2 1 999999999 1 0
0 1 1000000000
output
NO

Note

Here's how the graph in the first sample case looks like :

In the first sample case, there is only one missing edge weight. Placing the weight of 8 gives a shortest path from 0 to 4 of length 13.

In the second sample case, there is only a single edge. Clearly, the only way is to replace the missing weight with 123456789.

In the last sample case, there is no weights to assign but the length of the shortest path doesn't match the required value, so the answer is "NO".

Understanding

给一个无向图,有一些权值为0的边要重构成正数权值,使得s→t的最短路为l

Solution

特判掉原本最短路(没有加入0边)<l→"NO"

分析一下,s→t的最短路,贪心,加入0边,先不管取值,先一条条赋为1(最小positive integer),如果当前最短路<l是不是说明当前这条边是最短路的一部分,所以答案就出来了,将这条边赋值为l-d[t]+1,如果最短路仍>l,而这已经是这条边的最优贡献,所以赋值为1继续做.

然后注意一下细节即可(WA了4发~~)

复杂度:O(nmlogn)(优化:对了,每次做最短路,当前值已经>l可以直接退出,所以其实跑得很快296MS)

// This file is made by YJinpeng,created by XuYike's black technology automatically.
// Copyright (C) 2016 ChangJun High School, Inc.
// I don't know what this program is. #include <iostream>
#include <vector>
#include <algorithm>
#include <cstring>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <queue>
#define IN inline
#define RG register
#define MOD 1000000007
#define INF 1e9+1
using namespace std;
typedef long long LL;
const int MAXN=1010;
const int MAXM=20010;
inline int gi() {
register int w=0,q=0;register char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')q=1,ch=getchar();
while(ch>='0'&&ch<='9')w=w*10+ch-'0',ch=getchar();
return q?-w:w;
}
int tot,cnt,S[MAXM],T[MAXM];
struct Dijskra{
static const int N=1010,M=(N*10)<<1;
int n,t,l;int d[N],fr[N];int to[M],ne[M],be[M],W[M];bool u[N];
struct node{
int s,p;
bool operator<(node a)const{return s>a.s;}
};
priority_queue<node>q;
IN void link(RG int u,RG int v,RG int w){
//if(w>l)return; this some edges didn't get
to[++t]=v;ne[t]=fr[u];fr[u]=t;W[t]=w;be[t]=u;
}
int Dij(int begin,int end){
for(int i=0;i<n;i++)d[i]=INF;
q.push((node){d[begin]=0,begin});memset(u,0,sizeof(u));
while(!q.empty()){
while(u[q.top().p]&&!q.empty())q.pop();
if(q.empty())break;
int x=q.top().p;q.pop();u[x]=1;
if(x==end||d[x]>l)break;
for(int o=fr[x],y;y=to[o],o;o=ne[o])
if(d[x]+W[o]<d[y]&&d[x]+W[o]<=l){
d[y]=d[x]+W[o];
q.push((node){d[y],y});
}
}
return d[end];
}
void pri(int end){
printf("YES\n");
for(int i=1;i<t-1;i+=2)
printf("%d %d %d\n",be[i],to[i],W[i]);
printf("%d %d %d\n",be[t-1],to[t-1],l-d[end]+W[t-1]);//this W[t-1]
for(int i=tot;i<=cnt;i++)printf("%d %d %d\n",S[i],T[i],(int)INF);exit(0);
}
}e;
int main()
{
freopen("D.in","r",stdin);
freopen("D.out","w",stdout);
int n=gi(),m=gi(),l=gi(),s=gi(),t=gi();e.l=l;e.n=n;
for(int i=1;i<=m;i++){
int u=gi(),v=gi(),w=gi();
if(w)e.link(u,v,w),e.link(v,u,w);
else S[++cnt]=u,T[cnt]=v;
}tot=1;//this
if(e.Dij(s,t)<l){printf("NO");return 0;}
if(e.d[t]==l)e.pri(t);
for(;tot<=cnt;tot++){
e.link(S[tot],T[tot],1);e.link(T[tot],S[tot],1);
if(e.Dij(s,t)<=l)break;
}tot++;
if(tot>cnt+1)return 0*puts("NO");
e.pri(t);
return 0;
}

【Codeforces】716D Complete The Graph的更多相关文章

  1. Codeforces 715B & 716D Complete The Graph 【最短路】 (Codeforces Round #372 (Div. 2))

    B. Complete The Graph time limit per test 4 seconds memory limit per test 256 megabytes input standa ...

  2. 【CodeForces】915 D. Almost Acyclic Graph 拓扑排序找环

    [题目]D. Almost Acyclic Graph [题意]给定n个点的有向图(无重边),问能否删除一条边使得全图无环.n<=500,m<=10^5. [算法]拓扑排序 [题解]找到一 ...

  3. 【Codeforces】Round #491 (Div. 2) 总结

    [Codeforces]Round #491 (Div. 2) 总结 这次尴尬了,D题fst,E没有做出来.... 不过还好,rating只掉了30,总体来说比较不稳,下次加油 A:If at fir ...

  4. 【Codeforces】Round #488 (Div. 2) 总结

    [Codeforces]Round #488 (Div. 2) 总结 比较僵硬的一场,还是手速不够,但是作为正式成为竞赛生的第一场比赛还是比较圆满的,起码没有FST,A掉ABCD,总排82,怒涨rat ...

  5. 【CodeForces】841D. Leha and another game about graph(Codeforces Round #429 (Div. 2))

    [题意]给定n个点和m条无向边(有重边无自环),每个点有权值di=-1,0,1,要求仅保留一些边使得所有点i满足:di=-1或degree%2=di,输出任意方案. [算法]数学+搜索 [题解] 最关 ...

  6. 【CodeForces】601 D. Acyclic Organic Compounds

    [题目]D. Acyclic Organic Compounds [题意]给定一棵带点权树,每个点有一个字符,定义一个结点的字符串数为往下延伸能得到的不重复字符串数,求min(点权+字符串数),n&l ...

  7. 【Codeforces】849D. Rooter's Song

    [算法]模拟 [题意]http://codeforces.com/contest/849/problem/D 给定n个点从x轴或y轴的位置p时间t出发,相遇后按对方路径走,问每个数字撞到墙的位置.(还 ...

  8. 【CodeForces】983 E. NN country 树上倍增+二维数点

    [题目]E. NN country [题意]给定n个点的树和m条链,q次询问一条链(a,b)最少被多少条给定的链覆盖.\(n,m,q \leq 2*10^5\). [算法]树上倍增+二维数点(树状数组 ...

  9. 【CodeForces】925 C.Big Secret 异或

    [题目]C.Big Secret [题意]给定数组b,求重排列b数组使其前缀异或和数组a单调递增.\(n \leq 10^5,1 \leq b_i \leq 2^{60}\). [算法]异或 为了拆位 ...

随机推荐

  1. 基于Redis的三种分布式爬虫策略

    前言: 爬虫是偏IO型的任务,分布式爬虫的实现难度比分布式计算和分布式存储简单得多. 个人以为分布式爬虫需要考虑的点主要有以下几个: 爬虫任务的统一调度 爬虫任务的统一去重 存储问题 速度问题 足够“ ...

  2. 如何在 CentOS 7 上生成 SSL 证书为 Nginx 加密

    本文首发:开发指南:如何在 CentOS 7 上安装 Nginx Let’s Encrypt 是由 Internet Security Research Group (ISRG) 开发的一个自由.自动 ...

  3. 【面试题】LRU算法及编码实现LRU策略缓存

    概念 LRU(least recently used)就是将最近不被访问的数据给淘汰掉,LRU基于一种假设:认为最近使用过的数据将来被使用的概率也大,最近没有被访问的数据将来被使用的概率比较低. 原理 ...

  4. http chunked 理解

    https://imququ.com/post/transfer-encoding-header-in-http.html #! /usr/bin/python #coding:utf8 import ...

  5. vs2003 刷新项目失败。无法从服务器中检索文件夹信息

    环境: 操作系统:windows server 2003 开发工具:Visual stuadio 2003 FrameWork: 1.1 打开web项目的时候报错   提示 项目刷新失败,无法从服务器 ...

  6. xtu summer individual 5 E - Burning Bridges

    Burning Bridges Time Limit: 5000ms Memory Limit: 32768KB This problem will be judged on ZJU. Origina ...

  7. hdu 4771好题

    #include<stdio.h> #include<string.h>//通过只记录每一步此时点的状态.题非常好 #include<queue> using na ...

  8. 舒适的路线(codevs 1001)

    题目描述 Description Z小镇是一个景色宜人的地方,吸引来自各地的观光客来此旅游观光.Z小镇附近共有N(1<N≤500)个景点(编号为1,2,3,…,N),这些景点被M(0<M≤ ...

  9. redis可视化界面的操作【二十一】

    1.安装  2.linux服务器中开启linux服务 root@qiaozhi:~# cd /usr/local/redis root@qiaozhi:/usr/local/redis# ./bin/ ...

  10. jackson的应用

    直接上代码 package com.demo.jackson.utils; import com.fasterxml.jackson.core.JsonProcessingException; imp ...