Saving Beans

            Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
                  Total Submission(s): 5769    Accepted Submission(s): 2316

Problem Description
Although winter is far away, squirrels have to work day and night to save beans. They need plenty of food to get through those long cold days. After some time the squirrel family thinks that they have to solve a problem. They suppose that they will save beans in n different trees. However, since the food is not sufficient nowadays, they will get no more than m beans. They want to know that how many ways there are to save no more than m beans (they are the same) in n trees.

Now they turn to you for help, you should give them the answer. The result may be extremely huge; you should output the result modulo p, because squirrels can’t recognize large numbers.

 
Input
The first line contains one integer T, means the number of cases.

Then followed T lines, each line contains three integers n, m, p, means that squirrels will save no more than m same beans in n different trees, 1 <= n, m <= 1000000000, 1 < p < 100000 and p is guaranteed to be a prime.

 
Output
You should output the answer modulo p.
 
Sample Input
2
1 2 5
2 1 5
 
Sample Output
3
3

Hint

Hint

For sample 1, squirrels will put no more than 2 beans in one tree. Since trees are different, we can label them as 1, 2 … and so on.
The 3 ways are: put no beans, put 1 bean in tree 1 and put 2 beans in tree 1. For sample 2, the 3 ways are:
put no beans, put 1 bean in tree 1 and put 1 bean in tree 2.

 
Source
 
Recommend
gaojie   |   We have carefully selected several similar problems for you:  3033 3038 3036 3035 3034 
 
题意:在n树中有多少种方式可以节省不超过m豆子(他们是一样的)。
思路:

题目可以转换成  x1+x2+……+xn=m 有多少组解,m在题中可以取0~m。

利用插板法可以得出x1+x2+……+xn=m解的个数为C(n+m-1,m);

则题目解的个数可以转换成求   sum=C(n+m-1,0)+C(n+m-1,1)+C(n+m-1,2)……+C(n+m-1,m)

利用公式C(n,r)=C(n-1,r)+C(n-1,r-1)  == >  sum=C(n+m,m)。

就是要求C(n+m,m)%p。

代码:
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#define ll long long
using namespace std;
ll t,n,m,p,ans;
ll read()
{
    ll x=,f=; char ch=getchar();
    ; ch=getchar();}
    +ch-'; ch=getchar();}
    return x*f;
}
ll qpow(ll n,ll k)
{
    ll res=;
    while(k)
    {
        ) res=res*n%p;
        n=n*n%p; k>>=;
    }return res;
}
ll c(ll n,ll m)
{
    ;
    ll n1=,m1=;
    ;i<=n;i++)
     n1=n1*i%p;
    ;i<=m;i++)
     m1=m1*i%p;
    );
}
ll lus(ll n,ll m)
{
     ) ;
     return c(n%p,m%p)*lus(n/p,m/p)%p;
}
int main()
{
    t=read();
    while(t--)
    {
        n=read(),m=read(),p=read();
        ans=lus(n+m,m);
        printf("%lld\n",ans);
    }
    ;
}

poj—— 3037 Saving Beans的更多相关文章

  1. hdu 3037 Saving Beans(组合数学)

    hdu 3037 Saving Beans 题目大意:n个数,和不大于m的情况,结果模掉p,p保证为素数. 解题思路:隔板法,C(nn+m)多选的一块保证了n个数的和小于等于m.可是n,m非常大,所以 ...

  2. hdu 3037 Saving Beans Lucas定理

    Saving Beans Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tota ...

  3. hdu 3037 Saving Beans

    Saving Beans Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tota ...

  4. HDOJ 3037 Saving Beans

    如果您有n+1树,文章n+1埋不足一棵树m种子,法国隔C[n+m][m] 大量的组合,以取mod使用Lucas定理: Lucas(n,m,p) = C[n%p][m%p] × Lucas(n/p,m/ ...

  5. hdu 3037——Saving Beans

    Saving Beans Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tota ...

  6. Hdu 3037 Saving Beans(Lucus定理+乘法逆元)

    Saving Beans Time Limit: 3000 MS Memory Limit: 32768 K Problem Description Although winter is far aw ...

  7. HDU 3037 Saving Beans(Lucas定理模板题)

    Problem Description Although winter is far away, squirrels have to work day and night to save beans. ...

  8. HDU 3037 Saving Beans (Lucas法则)

    主题链接:pid=3037">http://acm.hdu.edu.cn/showproblem.php?pid=3037 推出公式为C(n + m, m) % p. 用Lucas定理 ...

  9. HDU 3037 Saving Beans(Lucas定理的直接应用)

    解题思路: 直接求C(n+m , m) % p , 由于n , m ,p都非常大,所以要用Lucas定理来解决大组合数取模的问题. #include <string.h> #include ...

随机推荐

  1. DFS HDU 5305 Friends

    题目传送门 /* 题意:每个点都要有偶数条边,且边染色成相同的两部分,问能有多少种染色方法 DFS+剪枝:按照边数来DFS,每种染色数为该点入度的一半,还有如果点不是偶数边就不DFS 这是别人的DFS ...

  2. Hibernate 一对多查询对set的排序

    Hibernate可以进行一对多的关联查询,例如:查询了试卷题目,可以自动获取试卷题目的选项对象. 但是关联出来的集合对象是无序的,那么在显示的时候就会有问题,经过百度发现可以对Set进行设置排序. ...

  3. 如何在Eclipse或者Myeclipse中使用tomcat(配置tomcat,发布web项目)?(图文详解)(很实用)

    前期博客 Eclipse里的Java EE视图在哪里?MyEclipse里的Java EE视图在哪里?MyEclipse里的MyEclipse Java Enterprise视图在哪里?(图文详解) ...

  4. 支持多种格式的播放器js代码

    FLV需要播放器,其它视频格式直接插入相应的代码即可. ------------------------------------- /**   *视频播放 by zhensheng@   *参数说明  ...

  5. .Net实战之反射外卖计费

    场景 叫外卖支付,可以有以下优惠: 1.  满30元减12 2.  是会员减配送费,比如5元 3.  优惠券 …. 问题? 如何在不改代码的情况下更灵活的去控制优惠的变化??? 有些代码与实际业务可能 ...

  6. [ ZJOI 2010 ] 网络扩容

    \(\\\) Description 给定一张有向图,每条边都有一个容量 \(C\) 和一个扩容费用 \(W\). 这里扩容费用是指将容量扩大 \(1\) 所需的费用.求: 在不扩容的情况下, \(1 ...

  7. Win10 “此环境变量太大。此对话框允许将值设置为最长2047个字符。" 解决方法。

    打开注册表 HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Session Manager\Environment 双击右边的 Path (RE ...

  8. POJ_3041_Asteroids

    参考自: http://user.qzone.qq.com/289065406/blog/1299322465 解题思路: 把方阵看做一个特殊的二分图(以行列分别作为两个顶点集V1.V2,其中| V1 ...

  9. Spring Boot 创建hello world项目

    Spring Boot 创建hello world项目 1.创建项目 最近在学习Spring Boot,这里记录使用IDEA创建Spring Boot的的过程 在1出勾选,选择2,点击Next 这里填 ...

  10. (转)MySQL中的索引详讲

    序言 之前写到MySQL对表的增删改查(查询最为重要)后,就感觉MySQL就差不多学完了,没有想继续学下去的心态了,原因可能是由于别人的影响,觉得对于MySQL来说,知道了一些复杂的查询,就够了,但是 ...