【BZOJ4559】成绩比较(组合计数,容斥原理)
题意:
整体思路:先求出所有其他人和B神每门课分数相对大小的不同方案数,然后再计算每门课的方案数,两者乘积即为答案。
① 先算第一部分,直接算比较难,考虑容斥原理。
f[i]表示有i个人被碾压的方案数,则f[i]=C(n-1,i)*C(n-1-i,rnk[1]-1)*C(n-1-i,rnk[2]-1)*…*C(n-1-i,rnk[m]-1)-f[i+1]*C(i+1,i)-f[i+2]*C(i+2,i)-…-f[n-1]*C(n-1,i),即用至少i个人被碾压的方案数减去不合法的。f数组逆向递推即可求出。
② 再算第二部分,对于每一门分别计算,然后乘起来。
假设某一门课的总分为s,B神的名次和分数分别为rnk和x,则方案数为x^(n-rnk)*(s-x)^(rnk-1)。
展开化简得∑ C(rnk-1,i)*s^(rnk-1-i)*x^(n-rnk+i),0≤i≤rnk-1。
我们要对x=1,2,…,s的所有情况求和。
把x次数相同的项放在一起,转化成求1^p+2^p+...+s^p,p为常数。
设g[i]=1^i+2^i+...+s^i,然后观察规律:
(s+1)^(p+1)-s^(p+1)=C(p+1,0)*s^0+C(p+1,1)*s^1+…+C(p+1,p)*s^p
s^(p+1)-(s-1)^(p+1)=C(p+1,0)*(s-1)^0+C(p+1,1)*(s-1)^1+…+C(p+1,p)*(s-1)^p
……
2^(p+1)-1^(p+1)=C(p+1,0)*1^0+C(p+1,1)*1^1+…+C(p+1,p)*1^p
将式子相加,得:(s+1)^(p+1)-1=C(p+1,0)*g[0]+C(p+1,1)*g[1]+…+C(p+1,p)*g[p]
移项,得:g[p]=((s+1)^(p+1)-1-C(p+1,0)*g[0]-C(p+1,1)*g[1]-…-C(p+1,p-1)*g[p-1]) / C(p+1,p)
于是可以通过正向递推求出g数组。
这样,这个问题就完美解决了,时间复杂度O(n^3)。
const mo=;
var exf,fac:array[..]of int64;
a,b:array[..]of longint;
g,f:array[..]of int64;
n,m,k1,i,j,k,v:longint;
ans,tmp:int64; function c(n,m:longint):int64;
begin
if n<m then exit();
exit(fac[n]*exf[m] mod mo*exf[n-m] mod mo);
end; function mult(x,y:longint):int64;
var tmp:int64;
begin
if x= then exit();
mult:=; tmp:=x;
while y> do
begin
if y and = then mult:=mult*tmp mod mo;
tmp:=tmp*tmp mod mo;
y:=y>>;
end;
end; begin
assign(input,'bzoj4559.in'); reset(input);
assign(output,'bzoj4559.out'); rewrite(output);
readln(n,m,k1);
for i:= to m do read(a[i]);
for i:= to m do read(b[i]);
exf[]:=; exf[]:=; fac[]:=;
for i:= to do exf[i]:=exf[mo mod i]*(mo-mo div i) mod mo;
for i:= to do exf[i]:=exf[i-]*exf[i] mod mo;
for i:= to do fac[i]:=fac[i-]*i mod mo;
for i:=n- downto k1 do
begin
f[i]:=c(n-,i);
for j:= to m do f[i]:=f[i]*c(n-i-,b[j]-) mod mo;
for j:=i+ to n- do f[i]:=(f[i]-f[j]*c(j,i) mod mo+mo) mod mo;
end; ans:=;
for i:= to m do
begin
g[]:=a[i];
for j:= to n do
begin
g[j]:=(mult(a[i]+,j+)-+mo) mod mo;
for k:= to j- do g[j]:=(g[j]-c(j+,k)*g[k] mod mo+mo) mod mo;
g[j]:=g[j]*mult(j+,mo-) mod mo;
end;
tmp:=; v:=;
for j:= to b[i]- do
begin
tmp:=(tmp+c(b[i]-,j)*mult(a[i],b[i]--j) mod mo*g[n-b[i]+j]*v mod mo+mo) mod mo;
v:=-v;
end;
ans:=ans*tmp mod mo;
end;
//for i:= to n do writeln(g[i]);
writeln(ans*f[k1] mod mo); close(input);
close(output);
end.
【BZOJ4559】成绩比较(组合计数,容斥原理)的更多相关文章
- 集训队8月9日(组合计数+容斥原理+Mobius函数)
刷题数:4 今天看了组合计数+容斥原理+Mobius函数,算法竞赛进阶指南169~179页 组合计数 https://www.cnblogs.com/2462478392Lee/p/11328938. ...
- BZOJ 4555: [Tjoi2016&Heoi2016]求和 [FFT 组合计数 容斥原理]
4555: [Tjoi2016&Heoi2016]求和 题意:求\[ \sum_{i=0}^n \sum_{j=0}^i S(i,j)\cdot 2^j\cdot j! \\ S是第二类斯特林 ...
- bzoj2839 集合计数 组合计数 容斥原理|题解
集合计数 题目描述 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得它们的交集的元素个数为K,求取法的方案数,答案模1000000007.(是 ...
- UVa 11806 - Cheerleaders (组合计数+容斥原理)
<训练指南>p.108 #include <cstdio> #include <cstring> #include <cstdlib> using na ...
- BZOJ 4555: [Tjoi2016&Heoi2016]求和 [分治FFT 组合计数 | 多项式求逆]
4555: [Tjoi2016&Heoi2016]求和 题意:求\[ \sum_{i=0}^n \sum_{j=0}^i S(i,j)\cdot 2^j\cdot j! \\ S是第二类斯特林 ...
- [总结]数论和组合计数类数学相关(定理&证明&板子)
0 写在前面 0.0 前言 由于我太菜了,导致一些东西一学就忘,特开此文来记录下最让我头痛的数学相关问题. 一些引用的文字都注释了原文链接,若侵犯了您的权益,敬请告知:若文章中出现错误,也烦请告知. ...
- 一道组合数问题--出自 曹钦翔_wc2012组合计数与动态规划
一道组合数问题--出自 曹钦翔_wc2012组合计数与动态规划 [问题描述] 众所周知,xyc 是一个宇宙大犇,他最近在给他的学弟学妹们出模拟赛. 由于 xyc 实在是太巨了,他出了一套自认为很水的毒 ...
- ACM组合计数入门
1 排列组合 1.1 排列 \[A_n^m=n(n-1)(n-2)\cdots(n-m+1)=\frac{n!}{(n-m)!} \] 定义:从 n 个中选择 m 个组成有序数列,其中不同数列的数量. ...
- bzoj 2281 [Sdoi2011]黑白棋(博弈+组合计数)
黑白棋(game) [问题描述] 小A和小B又想到了一个新的游戏. 这个游戏是在一个1*n的棋盘上进行的,棋盘上有k个棋子,一半是黑色,一半是白色. 最左边是白色棋子,最右边是黑色棋子,相邻的棋子颜色 ...
- 【BZOJ5491】[HNOI2019]多边形(模拟,组合计数)
[HNOI2019]多边形(模拟,组合计数) 题面 洛谷 题解 突然特别想骂人,本来我考场现切了的,结果WA了几个点,刚刚拿代码一看有个地方忘记取模了. 首先发现终止态一定是所有点都向\(n\)连边( ...
随机推荐
- jmeter(四)检查点
JMeter也有像LR中的检查点,本篇就来介绍下JMeter的检查点如何去实现. JMeter里面的检查点通过添加断言来完成. 检查点:上一章讲到,我们对用户名和密码进行了参数化,那么怎样来判断jme ...
- 1043 幸运号码 数位DP
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1043 设dp[i][j]表示前i位数中,i位数的和为j时的所有情况. 转 ...
- leetcode764 Largest Plus Sign
思路: 首先使用dp计算出在每个位置(i, j)上下左右最多有多少个连续的1,得到up[i][j], down[i][j], left[i][j], right[i][j].然后计算这四个值中的最小值 ...
- Jauery 中Ajax的几种异步请求
以下介绍Jquery中 Post Get Ajax几种异步请求的使用方法 <%@ Page Language="C#" AutoEventWireup=&q ...
- Node.js——请求头
var http = require('http') var server = http.createServer(); server.on('request', function (req, res ...
- ubunut在线音乐比方软件
今天安装了一个音乐在线播放软件,忍不住要来赞一下, 之前一直都是用网页在线的qq音乐听的,这样就有点感觉不爽了, 今天突然想起来好像在网上看到的在ubuntu下有用网易云音乐的,就上网看了一下 还真的 ...
- WebAPI中Area的使用
很简单,创建area后,添加一下代码到AreaRegistration中即可 context.Routes.MapHttpRoute( name: "api_default", r ...
- servlet 常用指令
一.设置响应内容类型 response.setContentType("text/html;charset=UTF-8"); 二.设置请求的字符编码 request.setChar ...
- 【东软实训】SQLselect及其相关操作
SQL select 及相关操作 SQL是用于访问和处理数据库的标准的计算机语言,我们所使用的的是Oracle SQL 一个数据库通常包含一个或多个表,每个表有一个名字表示,下图即为一个名为“emp” ...
- react-native IOS Build input file cannot be found: '~~~~~/node_modules/react-native/Libraries/WebSocket/libfishhook.a'
尝试添加或者删除libfishhook.a 如果解决了你的问题请点个赞!