http://acm.hdu.edu.cn/showproblem.php?pid=1051

Problem Description
There is a pile of n wooden sticks. The length and weight of each stick are known in advance. The sticks are to be processed by a woodworking machine in one by one fashion. It needs some time, called setup time, for the machine to prepare processing a stick. The setup times are associated with cleaning operations and changing tools and shapes in the machine. The setup times of the woodworking machine are given as follows:

(a) The setup time for the first wooden stick is 1 minute. 
(b) Right after processing a stick of length l and weight w , the machine will need no setup time for a stick of length l' and weight w' if l<=l' and w<=w'. Otherwise, it will need 1 minute for setup.

You are to find the minimum setup time to process a given pile of n wooden sticks. For example, if you have five sticks whose pairs of length and weight are (4,9), (5,2), (2,1), (3,5), and (1,4), then the minimum setup time should be 2 minutes since there is a sequence of pairs (1,4), (3,5), (4,9), (2,1), (5,2).

 
Input
The input consists of T test cases. The number of test cases (T) is given in the first line of the input file. Each test case consists of two lines: The first line has an integer n , 1<=n<=5000, that represents the number of wooden sticks in the test case, and the second line contains n 2 positive integers l1, w1, l2, w2, ..., ln, wn, each of magnitude at most 10000 , where li and wi are the length and weight of the i th wooden stick, respectively. The 2n integers are delimited by one or more spaces.
 
Output
The output should contain the minimum setup time in minutes, one per line.
 
Sample Input
3
5
4 9 5 2 2 1 3 5 1 4
3
2 2 1 1 2 2
3
1 3 2 2 3 1
 
Sample Output
2 1 3
这道题刚开始并不知道怎么写   丝毫没有思路  后来发现这不就是上升子序列么
但是还是忘了怎么写   就翻了之前的博客有调试一下才看懂
发现真是学的不快忘得挺快   唉  
#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<queue> using namespace std; #define N 5500
struct node
{
int u,v;
}a[N]; int cmp(const void *x,const void *y)
{
struct node *c,*d;
c=(struct node *)x;
d=(struct node *)y;
if(c->u!=d->u)
return d->u-c->u;
else
return d->v-c->v;
}
int main()
{
int T,n;
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
for(int i=;i<n;i++)
{
scanf("%d %d",&a[i].u,&a[i].v);
}
qsort(a,n,sizeof(a[]),cmp);
int dp[N];
int Max=;
for(int i=;i<n;i++)
{
dp[i]=;
for(int j=;j<i;j++)
{
if(a[i].v>a[j].v && dp[j]+>dp[i])
dp[i]=dp[j]+;
}
if(dp[i]>dp[Max])
Max=i;
}
printf("%d\n",dp[Max]);
}
return ;
}

Wooden Sticks---hdu1051(最长上升子序列)的更多相关文章

  1. Wooden Sticks(hdu1051)

    Wooden Sticks Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submi ...

  2. POJ-1065 Wooden Sticks,排序+最长单减子序列!

                                                       Wooden Sticks 题意:有一台机器处理木材,最开始需要一分钟准备,如果后面处理的木材比前 ...

  3. SPOJ 3937 - Wooden Sticks 最长上升子序列LIS

    给了n个(n<=5000)木棍的长度hi与宽度wi(均小于10000),现在机器要打磨这些木棍,如果相邻连个木棍hi<=hj并且wi<=wj就不需要调整机器,问如何排序使得机器调整的 ...

  4. POJ - 1065 Wooden Sticks(贪心+dp+最长递减子序列+Dilworth定理)

    题意:给定n个木棍的l和w,第一个木棍需要1min安装时间,若木棍(l’,w’)满足l' >= l, w' >= w,则不需要花费额外的安装时间,否则需要花费1min安装时间,求安装n个木 ...

  5. HDU-1051/POJ-1065 Wooden sticks 木棍子(动态规划 LIS 线型动归)

    嘤嘤嘤,实习半年多的小蒟蒻的第一篇博客(题解) 英文的: There is a pile of n wooden sticks. The length and weight of each stick ...

  6. HDU1051 Wooden Sticks 【贪婪】

    Wooden Sticks Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) To ...

  7. Hdu1051 Wooden Sticks 2017-03-11 23:30 62人阅读 评论(0) 收藏

    Wooden Sticks Problem Description There is a pile of n wooden sticks. The length and weight of each ...

  8. hdu1051 Wooden Sticks(贪心+排序,逻辑)

    Wooden Sticks Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Tot ...

  9. HDU1051:Wooden Sticks

    Problem Description There is a pile of n wooden sticks. The length and weight of each stick are know ...

随机推荐

  1. sql通过 openrowset查询csv文件

    两步即可完成 第一步. 创建cmmData.xml文件,并存入到能与sql服务器共享的文件夹中(如:\\10.252.21.6\sharedfolder) <?xml version=" ...

  2. ubuntu破解密码方法

    摘要: 开机按住任何键(shift)停住grub菜单,进入advanced option for ubuntu,出现的菜单中,光标移动至…(recovery mode)按E进入编辑,找到ro reco ...

  3. Android(java)学习笔记167:横竖屏切换时Activity的生命周期

    1.横竖屏切换的生命周期     默认情况下横竖屏切换,先销毁再创建 2.有的时候,默认情况下的横竖屏切换(先销毁再创建),对应用户体验是不好的,比如是手机游戏横竖屏切换对游戏体验非常不好,下面两种方 ...

  4. swift Equatable 的缺省实现

    Starting from Swift 4.1, all you have to is to conform to the Equatable protocol without the need of ...

  5. DoveCLL and Resistance(湖北省赛)

    题目 构造一个由串联和并联构成的纯电阻电路,使得该电路的等效电阻为p/q,其中(p,q) = 1.要求输出n,表示节点数,m表示电阻个数,m行每行ui,vi,wi,表示ui和vi之间要连上一个电阻为w ...

  6. dockerfile 的最佳实践

    Dockerfile 编写nginx容器 [root@mast nginx]# cat Dockerfile FROM centos MAINTAINER zhaoruidong RUN yum -y ...

  7. C++静态全局变量和全局变量的区别

      静态全局变量 非静态全局变量 存储方式 静态存储 静态存储 作用域 定义该变量的源文件内 所有源文件 解释: 共同点:全局变量(外部变量)的说明之前再冠以static 就构 成了静态的全局变量.全 ...

  8. 【软件构造】第三章第四节 面向对象编程OOP

    第三章第四节 面向对象编程OOP 本节讲学习ADT的具体实现技术:OOP Outline OOP的基本概念 对象 类 接口 抽象类 OOP的不同特征 封装 继承与重写(override) 多态与重载( ...

  9. JavaEE-07 过滤器和监听器

    学习要点 过滤器 监听器 过滤器Filter 过滤器的概念 过滤器位于客户端和web应用程序之间,用于检查和修改两者之间流过的请求和响应. 在请求到达Servlet/JSP之前,过滤器截获请求. 在响 ...

  10. dockerfile note

    dockerfile note reference summary defination docker can build images automatically by reading the in ...