Differentiation 导数和变化率
何为导数
1 : 如何求一条直线上一点的切线?
what did we learn in high school about what a tangent(切) line is ? :任意一点上的切线都可以有一个方程 y-y0 = k*(x-x0)来表示。
切线:一种极限是当Q趋近于P。->在一条弧线上由P,Q两点如何确定直线PQ,是切线呢?根据定理可得,当一条直线和一条弧线相交于两点的时候这条直线一定不是切线。所以只有当P和Q重合的时候着一条直线才是切线 XP-XQ=Δx , 只有当Δx -> 0 的时候直线PQ才是切线。
当求一条直线的斜率的时候我们就可以用y-y0 = k*(x-x0)来求解。Δx/Δy=k。p点可以用(x,y)来表示同样也可以用(x、f(x))来表示。所以将P、Q都用着一种形式来表示的话我们就可以得到P(x0,f(x0)),Q(x0+Δx,f(x0+Δx))。
这样的话就应该很熟悉了吧。下面我们求y=1/x的导数。由上述可得k=(y-y0)/(x-x0)=
=-1/(x0+Δx)*x0 其又名为差商
问题2:由1/x的切线和x,y轴围成三角形的面积。
同样我们需要在y=1/x上面找出来一点能过普遍表示的点。我们假设这一点为P(X0,Y0).我们已经知道P点的斜率为-1/x0^。同时这条切线也过P点P点的坐标为P(X0,Y0)。所以我们可以通过点斜式y-y0=k*(x-x0) ,求得切线。然后我们只需要求得x轴截距和y轴截距就可以了。我们知道x轴上y=0同理y轴可得x=0。所以我们可以求得截距。此题可解。x=2x0,y=2/x0=2×y0。
下面介绍一些记号一些用于表示导数的记号。
。
问题3:
求其导数。Δf / Δx = [(x+Δx)x-xn] / Δx .
引入:
二项式定理:
junk(垃圾). 为什么说 那些都是junk呢? 我们联系上面的Δf / Δx = [(x+Δx)x-xn] / Δx . 可以看出 xn -xn 消掉了,然后 除了 n*xn-1*Δx只有一个Δx之外其余的都是Δx的平方或平方之上的,因为Δx非常的小,所以可以将剩下的消除掉。所以可以得到 f(x)= xn的导数 f(x)“ = n*xn-1 .
在大部分的问题中我们都会用到微积分,但是微积分在其中只占了很小的一部分,所以经常会给我们造成一中微积分特别难的感觉。实际上微积分很简单,只是因为其他的知识我们不具备所以才会感觉微积分特别难。
Differentiation 导数和变化率的更多相关文章
- 自动微分方法(auto diff)
学习机器学习的同学在学习过程中会经常遇到一个问题,那就是对目标函数进行求微分,线性回归这类简单的就不说.复杂的如神经网络类那些求导过程的酸爽.像我还是那种比较粗心的人往往有十导九错,所以说自动求导就十 ...
- Reading | 《DEEP LEARNING》
目录 一.引言 1.什么是.为什么需要深度学习 2.简单的机器学习算法对数据表示的依赖 3.深度学习的历史趋势 最早的人工神经网络:旨在模拟生物学习的计算模型 神经网络第二次浪潮:联结主义connec ...
- 数值优化(Numerical Optimization)学习系列-无梯度优化(Derivative-Free Optimization)
数值优化(Numerical Optimization)学习系列-无梯度优化(Derivative-Free Optimization) 2015年12月27日 18:51:19 下一步 阅读数 43 ...
- Alink漫谈(十五) :多层感知机 之 迭代优化
Alink漫谈(十五) :多层感知机 之 迭代优化 目录 Alink漫谈(十五) :多层感知机 之 迭代优化 0x00 摘要 0x01 前文回顾 1.1 基本概念 1.2 误差反向传播算法 1.3 总 ...
- R语言的导数计算(转)
转自:http://blog.fens.me/r-math-derivative/ 前言 高等数学是每个大学生都要学习的一门数学基础课,同时也可能是考完试后最容易忘记的一门知识.我在学习高数的时候绞尽 ...
- pytorch学习-AUTOGRAD: AUTOMATIC DIFFERENTIATION自动微分
参考:https://pytorch.org/tutorials/beginner/blitz/autograd_tutorial.html#sphx-glr-beginner-blitz-autog ...
- 导数、多元函数、梯度、链式法则及 BP 神经网络
一元函数的导数 对于函数\(y=f(x)\),导数可记做\(f'(x_0)\).\(y'|x=x_0\)或\(\frac{dy}{dx}|x=x_0 \).定义如下: \[f'(x_0) = \lim ...
- Numerical Differentiation 数值微分
zh.wikipedia.org/wiki/數值微分 数值微分是数值方法中的名词,是用函数的值及其他已知资讯来估计一函数导数的算法. http://mathworld.wolfram.com/Nume ...
- Sobel导数
Sobel 导数 目标 本文档尝试解答如下问题: 如何使用OpenCV函数 Sobel 对图像求导. 如何使用OpenCV函数 Scharr 更准确地计算 核的导数. 原理 Note 以下内容来自于 ...
随机推荐
- poj2406--Power Strings(kmp:求循环串的次数)
Power Strings Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 33163 Accepted: 13784 D ...
- XML Schema笔记
XML Schema是为了弥补DTD的不足而开发的一种新的用于约束和规范XML文档的标准 XML Schema作用: 定义可出现在文档中的元素定义可出现在文档中的属性定义哪些元素是子元素定义子元素的次 ...
- VS2008转VS2013时遇到的问题
最近我们要把DPM进行行人检测嵌入到我们的项目里,需要一个高级版本的VS,于是我们要把2008转换成2013,至于为什么没有换成最高级的版本,可能担心会遇到有更多的麻烦吧,毕竟我们的DPM源码是在20 ...
- Android版DesiredCapabilities参数配置
前言 每一个App测试都应指定是在什么平台下,那个设备中运行那个App,而在Appium中主要是通过DesiredCapabilities来配置的. DesiredCapabilities的作用,负责 ...
- 1449: [JSOI2009]球队收益
1449: [JSOI2009]球队收益 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 757 Solved: 437[Submit][Status][ ...
- archlinux yaourt安装 以及出错细节 database file for "archlinuxfr" does not exist.
archlinux yaourt安装 但一直报错如下: :: Synchronizing package databases... core is up to date extra is u ...
- Spring中的AOP(学习笔记)
是什么AOP及实现方式 AOP的基本概念 Schema-base AOP Spring AOP API AspectJ
- Bootstrap progress-bar
1.进度条 在网页中,进度条的效果并不少见,比如一个评分系统,比如加载状态等.就如下图所示的一个评分系统,他就是一个简单的进度条效果: 进度条和其他独立组件一样,开发者可以根据自己的需要,选择对应的版 ...
- jquery 选择器(selector)和事件(events)
页面加载完成后开始运行do stuff when DOM is ready 中的语句! $(document).ready(function() { // do stuff when DO ...
- mysql数据库隔离级别及其原理、Spring的7种事物传播行为
一.事务的基本要素(ACID) 1.原子性(Atomicity):事务开始后所有操作,要么全部做完,要么全部不做,不可能停滞在中间环节.事务执行过程中出错,会回滚到事务开始前的状态,所有的操作就像没有 ...