并不会递推,不过板子挺好背的,只要是类似的递推都能用,但是注意c数组不能使负数

如果除了递推还有常数项的话,就用f[i]-f[i-1]的方式消掉常数项(然后多一个f[i-1]的项)

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
using namespace std;
const int N=4005,mod=1000000007;
int n,m,a[N],ans[N],c[N],d[N],f[N],an;
int read()
{
int r=0,f=1;
char p=getchar();
while(p>'9'||p<'0')
{
if(p=='-')
f=-1;
p=getchar();
}
while(p>='0'&&p<='9')
{
r=r*10+p-48;
p=getchar();
}
return r*f;
}
void jia(int &x,int y)
{
x+=y;
x>=mod?x-=mod:0;
}
int ksm(int a,int b)
{
int r=1;
while(b)
{
if(b&1)
r=1ll*r*a%mod;
a=1ll*a*a%mod;
b>>=1;
}
return r;
}
void mul(int a[],int b[])
{
memset(d,0,sizeof(d));
for(int i=0;i<=m;i++)
for(int j=0;j<=m;j++)
jia(d[i+j],1ll*a[i]*b[j]%mod);
for(int i=2*m;i>=m;i--)
{
for(int j=0;j<m;j++)
jia(d[i-m+j],1ll*d[i]*c[m-j]%mod);
d[i]=0;
}
for(int i=0;i<=2*m;i++)
a[i]=d[i];
}
int main()
{
n=read(),m=read();
for(int i=1;i<=m;i++)
c[i]=(read()+mod)%mod;
for(int i=0;i<m;i++)
f[i]=(read()+mod)%mod;
a[1]=1,ans[0]=1;
while(n)
{
if(n&1)
mul(ans,a);
mul(a,a);
n>>=1;
}
for(int i=0;i<m;i++)
jia(an,1ll*f[i]*ans[i]%mod);
printf("%lld\n",an);
return 0;
}

bzoj 4161 Shlw loves matrixI【常系数线性齐次递推】的更多相关文章

  1. bzoj 4161 Shlw loves matrixI——常系数线性齐次递推

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4161 还是不能理解矩阵…… 关于不用矩阵理解的方法:https://blog.csdn.ne ...

  2. bzoj 4161: Shlw loves matrixI

    Description 给定数列 {hn}前k项,其后每一项满足 hn = a1h(n-1) + a2h(n-2) + ... + ak*h(n-k) 其中 a1,a2...ak 为给定数列.请计算 ...

  3. BZOJ 4161 Shlw loves matrixI ——特征多项式

    矩阵乘法递推的新姿势. 叉姐论文里有讲到 利用特征多项式进行递推,然后可以做到k^2logn #include <cstdio> #include <cstring> #inc ...

  4. LOJ 2304 「NOI2017」泳池——思路+DP+常系数线性齐次递推

    题目:https://loj.ac/problem/2304 看了各种题解…… \( dp[i][j] \) 表示有 i 列.第 j 行及以下默认合法,第 j+1 行至少有一个非法格子的概率,满足最大 ...

  5. 模板-->常系数线性齐次递推(矩阵快速幂)

    如果有相应的OJ题目,欢迎同学们提供相应的链接 相关链接 所有模板的快速链接 Matrix模板 poj_2118_Firepersons,my_ac_code 简单的测试 None 代码模板 /* * ...

  6. 【Learning】常系数线性齐次递推

    给定数列前k项\(h_0...h_{k-1}\),其后的项满足:\(h_i=\sum_{i=1}^kh_{i-j}a_i\),其中\(a_1...a_k\)是给定的系数,求\(h_n\) 数据范围小的 ...

  7. bzoj4161: Shlw loves matrixI

    Description 给定数列 {hn}前k项,其后每一项满足 hn = a1*h(n-1) + a2*h(n-2) + ... + ak*h(n-k) 其中 a1,a2...ak 为给定数列.请计 ...

  8. 【BZOJ4161】Shlw loves matrixI (常系数齐次线性递推)

    [BZOJ4161]Shlw loves matrixI (常系数齐次线性递推) 题面 BZOJ 题解 \(k\)很小,可以直接暴力多项式乘法和取模. 然后就是常系数齐次线性递推那套理论了,戳这里 # ...

  9. 【BZOJ4161】Shlw loves matrixI

    题目描述 给定数列 {hn}前k项,其后每一项满足 hn = a1h(n-1) + a2h(n-2) + ... + ak*h(n-k) 其中 a1,a2...ak 为给定数列.请计算 h(n),并将 ...

随机推荐

  1. Effective C++ 条款11,12 在operator= 中处理“自我赋值” || 复制对象时不要忘记每一个成分

    1.潜在的自我赋值     a[i] = a[j];     *px = *py; 当两个对象来自同一个继承体系时,他们甚至不需要声明为相同类型就可能造成别名. 现在担心的问题是:假如指向同一个对象, ...

  2. Mac 下配置 Cocos2d-x 3-x android 的环境

    本人初学Cocos2d 3-x,环境配置,搭建android环境弄了好长时间,走了不少弯路,翻阅了好多人的博客和文档,包括官方文档讲的似乎有些似懂非懂,好多依然是旧的版本,所以把我的整个过程梳理一下. ...

  3. OpenStack源码系列---nova-compute

    nova-compute运行的节点为计算节点,虚拟机运行于计算节点上.例如对于创建虚拟机请求,nova-api接收到客户端请求后,经过nova-scheduler调度器调度,再将请求发送给某个选定的n ...

  4. Jenkins+maven+SVN+Tomcat部署过程

    一.下载地址 应首先确认安装了JDK: Jenkins下载地址:http://mirrors.shu.edu.cn/jenkins/windows-stable/jenkins-2.107.3.zip ...

  5. hibernate工作原理及作用

    转载自 http://www.cnblogs.com/dashi/p/3597969.html#commentform JAVA Hibernate工作原理及为什么要用 hibernate 简介:hi ...

  6. HttpClient 认证

    第四章 HTTP认证 HttpClient提供对由HTTP标准规范定义的认证模式的完全支持.HttpClient的认证框架可以扩展支持非标准的认证模式,比如NTLM和SPNEGO. 4.1 用户凭证 ...

  7. Apache Qpid 高可用集群

    一.RHCS RHCS是Red Hat Cluster Suite(红帽子集群套件)的缩写.RHCS是一个功能完备的集群应用解决方案,它从应用的前端访问到后端的数据存储都提供了一个行之有效的集群架构实 ...

  8. CGI的知识点

    CGI(Common Gateway Interface)是能让webserver和CGI脚本共同处理客户的请求的协议. 它的协议定义文档是http://www.ietf.org/rfc/rfc387 ...

  9. adb常用命令整理

    adb connect <IPAddress:Port>  //通过指定的IP地址及端口连接设备 adb devices  //显示所有已连接的设备 adb install <Pac ...

  10. luogu2704 炮兵阵地 状态压缩DP

    题目大意:一个N*M的地图由N行M列组成,地图的每一格可能是山地(用“H” 表示),也可能是平原(用“P”表示),在每一格平原地形上最多可以布置一支炮兵部队,能攻击到的区域:沿横向左右各两格,沿纵向上 ...