和bzoj 3944比较像,但是时间卡的更死

设\( f(n)=\sum_{d|n}\phi(d) g(n)=\sum_{i=1}^{n}f(i) s(n)=\sum_{i=1}^{n}\phi(i) \),然后很显然对于mu\( g(n)=1\),对于\( g(n)=n*(n+1)/2 \),然后可以这样转化一下:

\[g(n)=\sum_{i=1}^{n}\sum_{d|n}\phi(d)
\]

\[=\sum_{d=1}^{n}\phi(d)\left \lfloor \frac{n}{d} \right \rfloor
\]

\[=\sum_{d=1}^{n}s(\left \lfloor \frac{n}{d} \right \rfloor)
\]

\[s(n)=g(n)-\sum_{d=2}^{n}s(\left \lfloor \frac{n}{d} \right \rfloor)
\]

然后递归求解即可。

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const long long N=5000005,m=5000000,mod=1e9+7,inv2=500000004;
long long n,phi[N],q[N],tot,p[N];
bool v[N];
long long getp(long long x)
{
return (x<=m)?phi[x]:p[n/x];
}
void wk(long long x)
{//cout<<x<<endl;
if(x<=m)
return;
long long t=n/x;
if(v[t])
return;
v[t]=1;
long long w=x%mod;
p[t]=w*(w+1)%mod*inv2%mod;//cout<<x<<" "<<t<<endl;
for(long long i=2,la=1;la<x;i=la+1)
{
la=x/(x/i);
wk(x/i);
p[t]=(p[t]-getp(x/i)*(la-i+1)%mod)%mod;
}
}
int main()
{
phi[1]=1;
for(long long i=2;i<=m;i++)
{
if(!v[i])
{
q[++tot]=i;
phi[i]=i-1;
}
for(long long j=1;j<=tot&&i*q[j]<=m;j++)
{
long long k=i*q[j];
v[k]=1;
if(i%q[j]==0)
{
phi[k]=phi[i]*q[j];
break;
}
phi[k]=phi[i]*(q[j]-1);
}
}
for(long long i=2;i<=m;i++)
phi[i]=(phi[i]+phi[i-1])%mod;
scanf("%lld",&n);//cout<<n<<" "<<n%mod<<" "<<(n+1)%mod<<endl;
//g=(n%mod)*((n+1)%mod)%mod*inv2%mod;//cout<<g<<endl;
if(n<=m)
printf("%lld\n",phi[n]);
else
{
memset(v,0,sizeof(v));
wk(n);
printf("%lld\n",(p[1]%mod+mod)%mod);
}
return 0;
}

51nod 1239 欧拉函数之和【欧拉函数+杜教筛】的更多相关文章

  1. 中国剩余定理 & 欧拉函数 & 莫比乌斯反演 & 狄利克雷卷积 & 杜教筛

    ssplaysecond的博客(请使用VPN访问): 中国剩余定理: https://ssplaysecond.blogspot.jp/2017/04/blog-post_6.html 欧拉函数: h ...

  2. 51Nod 1239 欧拉函数前n项和 杜教筛

    http://www.51nod.com/Challenge/Problem.html#!#problemId=1239 AC代码 #include <bits/stdc++.h> #de ...

  3. 51Nod.1237.最大公约数之和 V3(莫比乌斯反演 杜教筛 欧拉函数)

    题目链接 \(Description\) \(n\leq 10^{10}\),求 \[\sum_{i=1}^n\sum_{j=1}^ngcd(i,j)\ mod\ (1e9+7)\] \(Soluti ...

  4. 51nod 1220 约数之和【莫比乌斯反演+杜教筛】

    首先由这样一个式子:\( d(ij)=\sum_{p|i}\sum_{q|j}[gcd(p,q)==1]\frac{pj}{q} \)大概感性证明一下吧我不会证 然后开始推: \[ \sum_{i=1 ...

  5. luogu P3768 简单的数学题 杜教筛 + 欧拉反演 + 逆元

    求 $\sum_{i=1}^{n}\sum_{j=1}^{n}ijgcd(i,j)$   考虑欧拉反演: $\sum_{d|n}\varphi(d)=n$   $\Rightarrow \sum_{i ...

  6. 51 NOD 1239 欧拉函数之和(杜教筛)

    1239 欧拉函数之和 基准时间限制:3 秒 空间限制:131072 KB 分值: 320 难度:7级算法题 收藏 关注 对正整数n,欧拉函数是小于或等于n的数中与n互质的数的数目.此函数以其首名研究 ...

  7. 51nod 1237 最大公约数之和 V3【欧拉函数||莫比乌斯反演+杜教筛】

    用mu写lcm那道卡常卡成狗(然而最后也没卡过去,于是写一下gcd冷静一下 首先推一下式子 \[ \sum_{i=1}^{n}\sum_{j=1}^{n}gcd(i,j) \] \[ \sum_{i= ...

  8. 【51nod-1239&1244】欧拉函数之和&莫比乌斯函数之和 杜教筛

    题目链接: 1239:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1239 1244:http://www.51nod. ...

  9. 杜教筛--51nod1239 欧拉函数之和

    求$\sum_{i=1}^{n}\varphi (i)$,$n\leqslant 1e10$. 这里先把杜教筛的一般套路贴一下: 要求$S(n)=\sum_{i=1}^{n}f(i)$,而现在有一数论 ...

  10. 【BZOJ4805】欧拉函数求和(杜教筛)

    [BZOJ4805]欧拉函数求和(杜教筛) 题面 BZOJ 题解 好久没写过了 正好看见了顺手切一下 令\[S(n)=\sum_{i=1}^n\varphi(i)\] 设存在的某个积性函数\(g(x) ...

随机推荐

  1. iOS - 设置系统类似的方法弃用警告的方式

    在开发过程中,调用系统方法时,经常可以看xCode 提示 该方法已弃用,如下图: 觉得特别炫,查一下资料,如果自己也想实现如下的效果,只需要采用系统的如下几个关键字加在方法名后面就可以了: NS_DE ...

  2. 怎么删除"自豪地采用WordPress"

    wordpress刚刚安装完毕,打开默认的主页,会发现底部有这样的一行文字:“自豪地采用WordPress”.当然了,我们做一个网站,不一定需要这些文字,我们可以删除或者修改这些文字.今天,小编就来教 ...

  3. C. Day at the Beach---cf559

    http://codeforces.com/problemset/problem/599/C 题目大意: 有n个城堡的高度   让你最多分成几个块   每个块排过序之后 整体是按照升序来的 分析:   ...

  4. POJ 3254 【状态压缩DP】

    题意: 给一块n*m的田地,1代表肥沃,0代表贫瘠. 现在要求在肥沃的土地上种草,要求任何两个草都不能相邻. 问一共有多少种种草的方法. 种0棵草也是其中的一种方法. n和m都不大于12. 思路: 状 ...

  5. 寒武纪camp Day3

    补题进度:9/10 A(多项式) 题意: 在一个长度为n=262144的环上,一个人站在0点上,每一秒钟有$\frac{1}{2}$的概率待在原地不动,有$\frac{1}{4}$的概率向前走一步,有 ...

  6. canvas跟随页面滑动后准确定位到真实坐标

    先来了解一个属性: getBoundingClientRect() 这个方法返回一个矩形对象,包含四个属性:left.top.right和bottom.分别表示元素各边与页面上边和左边的距离. var ...

  7. ModelAndView对象作用

    ModelAndView ModelAndView对象有两个作用: 作用一  :设置转向地址,如下所示(这也是ModelAndView和ModelMap的主要区别) ModelAndView mv = ...

  8. 解决maven Generating project in Interactive mode

    在idea建一个基于maven结构的web项目时,cmd输出卡死在Generating project in Interactive mode不动了 用命令mvn archetype:generate ...

  9. TList实现的任务队列

    TList实现的任务队列 var g_tasks: TList; type PTRecvPack = ^TRecvPack; TRecvPack = record // 接收到的原数据 socket: ...

  10. EJB学习(三)——java.lang.ClassCastException: com.sun.proxy.$Proxy2 cannot be cast to..

    在上一篇博客介绍了怎样使用使用Eclipse+JBOSS创建第一个EJB项目,在这期间就遇到一个错误: Exception in thread "main" java.lang.C ...