P5106 dkw的lcm
终于A了……细节真多……
首先我们发现这是个连乘,而且\(\phi\)是个积性函数,所以我们可以考虑不同的质因子以及它的不同次数的贡献。简单来说就是把每一次的\(\phi(lcm(i_1,i_2,...))\)拆成一堆\(\phi(p^c)\)的乘积
如果枚举到的\(k\)个数里质因子\(p\)的最大次数为\(c\),那么最终的答案就要乘上一个\(\phi(p^c)\)。所以我们的目的就是要求出这\(k\)个数里\(p\)的最大次数为\(c\)时的方案数\(t\),然后这部分对答案的贡献就是\(\phi(p^c)^t\)
计算方案的部分可以用容斥解决。设\(d_p(i)\)表示质因子\(p\)的最高次数为\(i\)的总方案数,\(s_p(i)\)表示质因子\(p\)的最高次数不超过\(i\)的总方案数,那么\(d_p(i)=s_p(i)-\sum_{j=1}^{i-1}d_p(j)\),边界条件为\(d_p(0)=s_p(0)\),前缀和优化一下就能快速计算了
最后是\(s_p(i)\)怎么计算。我们可以单独考虑每一位的方案数最后\(k\)位乘起来就好了。先考虑质因子\(p\)的最高次数刚好为\(i\)的情况,对于某一位来说,能选的数\(j\)要满足\(j\times p^i\leq n\)且\(j\)不包含\(p\)这个质因子,那么满足条件的\(j\)的次数就是\(\left\lfloor\frac{n}{p^i}\right\rfloor-\left\lfloor\frac{n}{p^{i+1}}\right\rfloor\),于是前缀和一下就能得到对一个数来说的方案数为\(n-\left\lfloor\frac{n}{p^i}\right\rfloor\),那么\(s_p(i)=(n-\left\lfloor\frac{n}{p^i}\right\rfloor)^k\)
然后注意一个细节,因为上面\(s_p\)和\(d_p\)的计算基本都是要炸精度所以要取模,然而因为这两个东西是作为次数出现的,所以根据欧拉定理取模的时候要模\(\phi(P)\)而不是\(P\),因为这个东西调死掉……
然后就没有然后了
//minamoto
#include<bits/stdc++.h>
#define R register
#define ll long long
#define inf 0x3f3f3f3f
#define fp(i,a,b) for(R int i=a,I=b+1;i<I;++i)
#define fd(i,a,b) for(R int i=a,I=b-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
using namespace std;
const int N=2e6+5,P=1e9+7,Phi=P-1;
int p[N],vis[N],phi[N],kkk[N];bool flag=0;
int n,k,m,ans;ll sum,t;
inline int add(R int x,R int y,R int P){return x+y>=P?x+y-P:x+y;}
inline int dec(R int x,R int y,R int P){return x-y<0?x-y+P:x-y;}
inline int ksm(R int x,R int y,R int P){
int res=1;
for(;y;y>>=1,x=1ll*x*x%P)if(y&1)res=1ll*res*x%P;
return res;
}
void init(int n){
phi[1]=kkk[1]=1;
fp(i,2,n){
if(!vis[i])p[++m]=i,phi[i]=i-1,kkk[i]=ksm(i,k,Phi);
//预处理一下phi和所有数的k次幂
for(R int j=1;j<=m&&1ll*i*p[j]<=n;++j){
vis[i*p[j]]=1,kkk[i*p[j]]=1ll*kkk[i]*kkk[p[j]]%Phi;
if(i%p[j]==0){phi[i*p[j]]=phi[i]*p[j];break;}
phi[i*p[j]]=phi[i]*(p[j]-1);
}
}
}
void solve(int p){
sum=kkk[n-n/p];
for(R int i=p;i<=n;(1ll*i*p<=n?i*=p:i=inf)){
t=dec(kkk[n-n/(1ll*i*p)],sum,Phi);
ans=1ll*ans*ksm(phi[i],t+Phi,P)%P,
sum=add(sum,t,Phi);
}
}
int main(){
// freopen("testdata.in","r",stdin);
scanf("%d%d",&n,&k),ans=1,init(n);if(n==1)return puts("1"),0;
fp(i,1,m)solve(p[i]);return printf("%d\n",ans),0;
}
P5106 dkw的lcm的更多相关文章
- [洛谷P5106]dkw的lcm:欧拉函数+容斥原理+扩展欧拉定理
分析 考虑使用欧拉函数的计算公式化简原式,因为有: \[lcm(i_1,i_2,...,i_k)=p_1^{q_{1\ max}} \times p_2^{q_{2\ max}} \times ... ...
- [Luogu5106]dkw的lcm
https://minamoto.blog.luogu.org/solution-p5106 容易想到枚举质因子及其次数计算其贡献,容斥计算$\varphi(p^i)$的次方数. #include&l ...
- LCM性质 + 组合数 - HDU 5407 CRB and Candies
CRB and Candies Problem's Link Mean: 给定一个数n,求LCM(C(n,0),C(n,1),C(n,2)...C(n,n))的值,(n<=1e6). analy ...
- CodeBlocks及LCM应用
以下是在开发过程中遇到的一些细节点: 1)called after throwing an instance of std::bad_alloc 此问题是由于publish(data),当中data赋 ...
- LCM 轻量级通信组件
LCM和ZMQ比较 http://www.doc88.com/p-6711552253536.html 基于LCM和ZeroMQ的进程间通信研究 2.简介 LCM(Lightweight Commuc ...
- uva12546. LCM Pair Sum
uva12546. LCM Pair Sum One of your friends desperately needs your help. He is working with a secret ...
- UVA 10791 Minimum Sum LCM(分解质因数)
最大公倍数的最小和 题意: 给一个数字n,范围在[1,2^23-1],这个n是一系列数字的最小公倍数,这一系列数字的个数至少为2 那么找出一个序列,使他们的和最小. 分析: 一系列数字a1,a2,a3 ...
- LCM在Kernel中的代码分析
lcm的分析首先是mtkfb.c 1.mtk_init中platform_driver_register(&mtkfb_driver)注册平台驱动 panelmaster_init(); DB ...
- Pairs Forming LCM(素因子分解)
http://acm.hust.edu.cn/vjudge/contest/view.action?cid=109329#problem/B 全题在文末. 题意:在a,b中(a,b<=n) ...
随机推荐
- List排列组合
/** * 步骤::每次递归时,把原始数据和满足条件的工作空间复制一份,所有的操作均在复制文件中进行,目的就是保证不破坏原始数据, * 从而可以让一轮递归结束后可以正常进行下一轮. * 其次,把数据的 ...
- 转:SIP相关的RFC文档索引
索引来源于http://www.packetizer.com/ipmc/sip/standards.html SIP Standards Core SIP Documents RFC Document ...
- 转:Linux性能评测工具之一:gprof篇
1 简介 改进应用程序的性能是一项非常耗时耗力的工作,但是究竟程序中是哪些函数消耗掉了大部分执行时间,这通常都不是非常明显的.GNU 编译器工具包所提供了一种剖析工具 GNU profiler(gpr ...
- ArcSDE数据库连接(直连、服务连)与GT_Geometry存
http://ziliao1.com/Article/Show/48126AB1A8F563D35E3D0345677C906B 众说周知,ArcSDE空间数据库引擎提供了两种连接数据库的方式.一是服 ...
- 深入理解 C 指针阅读笔记 -- 第六章
Chapter6.h #ifndef __CHAPTER_6_ #define __CHAPTER_6_ /*<深入理解C指针>学习笔记 -- 第六章*/ typedef struct _ ...
- Android消息机制1-Handler(Java层)(转)
转自:http://gityuan.com/2015/12/26/handler-message-framework/ 相关源码 framework/base/core/java/andorid/os ...
- jni——如何转换有符号与无符号数
java数据结构默认均为有符号数,而通过jni转换到c/c++层,却不一定是有符号数. 如若在java中存储的即为无符号数,则在jni中可将jbyte直接进行类型转换. 若进行操作,则可在计算时,先将 ...
- gbk转utf-8 iconv 编码转换
linux以下有时候 字符须要进行编码转换(爬虫将gbk转为utf-8编码...).一般能够选择iconv函数. 终端以下 输入 man 3 iconv 得到 iconv函数的用法. 个人看习惯了 ...
- MongoDB中对象反序列化的一个小问题
今天在mongoDB存取对象数据的时候,碰到一个小问题:对象的某一个字段类型是抽象类或者接口.在存入的时候没有问题.可是在读取的时候,因为没有详细类的信息,无法完毕对象的又一次构建.就会报错: Can ...
- RabbitMQ常用命令、管理界面
1.运行CMD,cd切换到RabbitMQ安装目录sbin下E:\Program Files\RabbitMQ Server\rabbitmq_server-3.7.2\sbin 执行 rabbitm ...