BZOJ 2693 jzptab ——莫比乌斯反演
同BZOJ 2154 但是需要优化
$ans=\sum_{d<=n}d*\sum_{i<=\lfloor n/d \rfloor} i^2 *\mu(i)* Sum(\lfloor \frac {n}{i*d} \rfloor,\lfloor \frac {m}{i*d} \rfloor)$
如果我们设$T=i*d$
$ans=\sum_{T<=n} Sum(\lfloor \frac {n}{T}\rfloor,\lfloor \frac {m}{T}\rfloor)\sum_{i \mid T} T*i*\mu(i)$
如果我们能计算出 $\sum_{i \mid T} T*i*\mu(i)$的前缀和 我们就可以在\Theta (n)的时间内解决这个问题
它是积性函数,当$pr[j] \nmid i$的时候,新加入的$pr[j]$对$\mu$没有贡献(均为0)只有$T$的部分发生了改变所以乘一个$pr[j]$就可以了
然后就可以$\Theta (T\sqrt n)$解决了
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#define F(i,j,k) for (int i=j;i<=k;++i)
#define D(i,j,k) for (int i=j;i>=k;--i)
#define ll long long
#define md 100000009
#define maxn 10000005 int n,m,t,h[maxn],pr[maxn],top=0;
bool vis[maxn]; void init()
{
memset(vis,false,sizeof vis);
h[1]=1;
F(i,2,maxn-1)
{
if (!vis[i])
{
pr[++top]=i;
h[i]=((i-(ll)i*i)%md+md)%md;
}
F(j,1,top)
{
if ((ll)i*pr[j]>=maxn) break;
vis[i*pr[j]]=true;
if (i%pr[j]==0)
{
h[i*pr[j]]=((ll)h[i]*pr[j])%md;
break;
}
h[i*pr[j]]=((ll)h[i]*h[pr[j]])%md;
}
}
F(i,2,maxn-1)
h[i]=((ll)h[i-1]+h[i])%md;
} ll Sum(int n,int m)
{
n%=md; m%=md;
n=((ll)n*(n+1)/2)%md;
m=((ll)m*(m+1)/2)%md;
return ((ll)n*m)%md;
} void solve(int n,int m)
{
if (n>m) swap(n,m);
ll ret=0;
for (int i=1,last=0;i<=n;i=last+1)
{
last=min(n/(n/i),m/(m/i));
ret=(ret+((ll)h[last]-h[i-1])*Sum(n/i,m/i))%md;
}
ret+=md; ret%=md;
printf("%lld\n",ret);
} int main()
{
init();
scanf("%d",&t);
while (t--)
{
scanf("%d%d",&n,&m);
solve(n,m);
}
}
BZOJ 2693 jzptab ——莫比乌斯反演的更多相关文章
- BZOJ 2693: jzptab [莫比乌斯反演 线性筛]
2693: jzptab Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 1194 Solved: 455[Submit][Status][Discu ...
- BZOJ 2693: jzptab( 莫比乌斯反演 )
速度居然#2...目测是因为我没用long long.. 求∑ lcm(i, j) (1 <= i <= n, 1 <= j <= m) 化简之后就只须求f(x) = x∑u( ...
- BZOJ 2693: jzptab 莫比乌斯反演 + 积性函数 +筛法
Code: #include<bits/stdc++.h> #define ll long long #define M 10001000 #define maxn 10200100 #d ...
- 【BZOJ】2693: jzptab 莫比乌斯反演
[题意]2154: Crash的数字表格 莫比乌斯反演,多组询问,T<=10000. [算法]数论(莫比乌斯反演) [题解]由上一题, $ans=\sum_{g\leq min(n,m)}g\s ...
- 【莫比乌斯反演】关于Mobius反演与lcm的一些关系与问题简化(BZOJ 2154 crash的数字表格&&BZOJ 2693 jzptab)
BZOJ 2154 crash的数字表格 Description 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b ...
- [bzoj 2693] jzptab & [bzoj 2154] Crash的数字表格 (莫比乌斯反演)
题目描述 TTT组数据,给出NNN,MMM,求∑x=1N∑y=1Mlim(x,y)\sum_{x=1}^N\sum_{y=1}^M lim(x,y)\newlinex=1∑Ny=1∑Mlim(x, ...
- bzoj [SDOI2014]数表 莫比乌斯反演 BIT
bzoj [SDOI2014]数表 莫比乌斯反演 BIT 链接 bzoj luogu loj 思路 \[ \sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}a*[f[ ...
- bzoj 2693: jzptab 线性筛积性函数
2693: jzptab Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 444 Solved: 174[Submit][Status][Discus ...
- ●BZOJ 2693 jzptab
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=2693 题解: 莫比乌斯反演 先看看这个题,BZOJ 2154 Crash的数字表格,本题的升 ...
随机推荐
- IP-XACT IP IEEE交换格式
1 What is IP-XACT? IP-XACT is an XML format that defines and describes electronic components a ...
- C++拾遗(一)——变量和基本类型
今天看到一个小小的算法,交换两个数却不引入中间变量,想了下没什么思路.看了答案是这样: int a, b; a = a + b; b = a - b; a = a - b; 感觉还是挺有想法的,借此也 ...
- 【数据库-Azure SQL Database】JDBC 如何连接 SQL Azure 数据库
使用 JAVA 代码连接 Azure SQL Database 时产生了 SSL 错误,对于此问题大多数用户都是因为不知如何编写 JDBC 连接字符串而产生的,以下为相关示例代码,供您参考: pa ...
- Python 目录和文件基本操作
今天在写一个小工具的过程中发现对目录和文件的基本操作不是很熟,特此把遇到的常用操作总结汇总下. 获取当前路径:os.getcwd() 目录操作:1.创建目录:os.mkdir('目录名')2.创建多级 ...
- ABC3D创客项目:国旗
国旗是一个国家的象征,也是一个民族的骄傲,国旗带给人们的不仅是荣耀,更多的是爱国的情结.看一场天安门的升旗仪式一度成为广大游客去到北京的必有项目,看国旗仪仗队将五星红旗与太阳同时升起,象征着我国充满活 ...
- WPF中Canvas使用
首先知道Canvas有Left.Right.Top和Bottom这四个属性,放入Canvas的元素通过这四个属性来决定它们在Canvas里面的位置. 比如: Xaml: <Canvas Hori ...
- python基础一 day9 函数升阶(3)
局部命名空间一般之间是独立,局部命名空间是调用函数时生成的函数的名字指向它所在的地址局部不会对全局产生影响,除非加global.# def max(a,b):# return a if a>b ...
- 79 最长公共子串 (lintcode)
f[i][j]表示的是以第i个结尾和第j个结尾 class Solution { public: /* * @param A: A string * @param B: A string * @ret ...
- 【page-monitor 前端自动化 上篇】初步调研
转载文章:来源(靠谱崔小拽) 前端自动化测试主要在于:变化快,不稳定,兼容性复杂:故而,想通过较低的成本维护较为通用的自动化case比较困难.本文旨在通过page-monitor获取和分析dom结构, ...
- a标签目标链接问题
1.先确定开始文件和目标文件,例如从css.html开始到body.html 2.确定文件寻找路径,因为css.html的父目录是css,而body.html在body目录下,所以需要先退到上一目录h ...