城堡
【问题描述】
给定一张N个点M条边的无向连通图,每条边有边权。我们需要从M条边中
选出N − 1条, 构成一棵树。 记原图中从 1 号点到每个节点的最短路径长度为?Di ,
树中从 1 号点到每个节点的最短路径长度为Si ,构出的树应当满足对于任意节点
i,都有Di = Si 。
请你求出选出N − 1条边的方案数。
【输入格式】
输入的第一行包含两个整数N和M。
接下来M行,每行包含三个整数u、v和w,描述一条连接节点u和v且边权为
w的边。
【输出格式】
输出一行,包含一个整数,代表方案数对2^31 − 1取模得到的结果。
【样例输入】
3 3
1 2 2
1 3 1
2 3 1
【样例输出】
2
【数据规模和约定】
对于30%的数据 2 ≤ N ≤ 5,M ≤ 10。
对于50%的数据,满足条件的方案数不超过 10000。
对于100%的数据,2≤ N ≤ 1000,N − 1 ≤ M ≤
N(N−1)/2,
1 ≤ w ≤ 100。

 #include<cstdio>
#include<cstring>
#include<cstdlib>
#include<queue>
using namespace std;
typedef long long ll;
const int N=;
const int M=;
const int INFI=;
const ll mod = (1LL<<)-1LL;
struct node{
int next,node,w;
}e[M*];
ll c[N+],ans;
int n,m,x,y,w,head[N+],tot,dis[N+];
bool exist[N+];
void add_edge(int a,int b,int w){
e[++tot].next=head[a];
head[a]=tot;e[tot].node=b;e[tot].w=w;
}
inline void SPFA(int s)
{
queue<int> que;
for(int i=;i<=n;i++) dis[i]=0x3f;
dis[s]=;exist[s]=true;que.push(s);
while(!que.empty())
{
int cur=que.front();
exist[cur]=false;que.pop();
for(int i=head[cur];i;i=e[i].next)
{
int node=e[i].node;
if(dis[node]>dis[cur]+e[i].w){
dis[node]=dis[cur]+e[i].w;
if(!exist[node])
exist[node]=true,que.push(node);
}
}
}
}
int main()
{
freopen("castle.in","r",stdin);
freopen("castle.out","w",stdout);
scanf("%d%d",&n,&m);
for(int i=;i<=m;i++){
scanf("%d%d%d",&x,&y,&w);add_edge(x,y,w);add_edge(y,x,w);
}
SPFA();
queue<int> q;q.push(),exist[]=true,c[]=1LL;
while(!q.empty()){
int cur=q.front();q.pop();
for(int i=head[cur];i;i=e[i].next){
int node=e[i].node;
if(dis[node]==dis[cur]+e[i].w){
++c[node];
if(c[node]>=mod) c[node]-=mod;
if(!exist[node]) q.push(node),exist[node]=true;
}
}
}
ans=1LL;
for(int i=;i<=n;i++){
ans*=c[i];
if(ans>=mod) ans%=mod;
}
printf("%d",(int)ans);
fclose(stdin);
fclose(stdout);
return ;
}

思路:两遍SPFA,第一遍求出dis[],第二遍的时候求出没个点可以有几条最短路得来,(++c[i]),之后,根据乘法原理,c数组全部乘起来并且取模。

16.1113 模拟考试T3的更多相关文章

  1. 16.1113 模拟考试T2

    测试题 #4 括号括号[问题描述]有一个长度为?的括号序列,以及?种不同的括号.序列的每个位置上是哪种括号是随机的,并且已知每个位置上出现每种左右括号的概率.求整个序列是一个合法的括号序列的概率.我们 ...

  2. 16.1113 模拟考试T1

    笔记[问题描述]给定一个长度为m的序列a,下标编号为1~m.序列的每个元素都是1~N的整数.定义序列的代价为累加(1->m-1 abs(ai+1-ai))你现在可以选择两个数x和y,并将序列?中 ...

  3. 16.1114 模拟考试T1

    1.正确答案 [题目描述] 小H与小Y刚刚参加完UOIP外卡组的初赛,就迫不及待的跑出考场对答案. “吔,我的答案和你都不一样!”,小Y说道,”我们去找神犇们问答案吧”. 外卡组试卷中共有m道判断题, ...

  4. 16.1112 模拟考试 T1

    加密[问题描述]有一种不讲道理的加密方法是: 在字符串的任意位置随机插入字符. 相应的,不讲道理的解密方法就是从字符串中恰好删去随机插入的那些字符.给定原文s和加密后的字符串t,求?有多少子串可以通过 ...

  5. 10.16 NOIP模拟赛

    目录 2018.10.16 NOIP模拟赛 A 购物shop B 期望exp(DP 期望 按位计算) C 魔法迷宫maze(状压 暴力) 考试代码 C 2018.10.16 NOIP模拟赛 时间:2h ...

  6. 【2018.06.26NOIP模拟】T3节目parade 【支配树】*

    [2018.06.26NOIP模拟]T3节目parade 题目描述 学校一年一度的学生艺术节开始啦!在这次的艺术节上总共有 N 个节目,并且总共也有 N 个舞台供大家表演.其中第 i 个节目的表演时间 ...

  7. 驾照理论模拟考试系统Android源码下载

    ‍‍‍驾照理论模拟考试系统Android源码下载 <ignore_js_op> 9.png (55.77 KB, 下载次数: 0) <ignore_js_op> 10.png ...

  8. RHCE模拟考试

    真实考试环境说明: 你考试所用的真实物理机器会使用普通账号自动登陆,登陆后,桌面会有两个虚拟主机图标,分别是system1和system2.所有的考试操作都是在system1和system2上完成.S ...

  9. PHPEMS在线模拟考试系统 v4.2

    官网地址 :http://www.phpems.net/ 下载地址 : http://www.phpems.net/index.php?content-app-content&contenti ...

随机推荐

  1. Failed to configure a DataSource: 'url' attribute is not specified and no embedded datasource could be configured.Reason: Failed to determine a suitable driver class

    解决方案: @SpringBootApplication(exclude = DataSourceAutoConfiguration.class) 作用://取消数据库配置 但是 在用到数据库的时候记 ...

  2. Maven01

    1. Maven简单介绍 Apache Maven是个项目管理和自动构建工具,基于项目对象模型(POM)的概念.  作用:完成项目的相关操作,如:编译,构建,单元测试,安装,网站生成和基于Maven部 ...

  3. C02 信息存储与运算

    目录 计算机内存 常量和变量 数据类型 运算符 计算机内存管理 计算机内存 信息存储概述 使用程序进行开发时,需要存储各种信息,这时候就需要用到变量.由于信息类型不同,变量的类型也因此不尽相同. 同时 ...

  4. xampp中php手动升级

    http://windows.php.net/download/           //要下载的 里面有dll文件 http://www.php.net/downloads.php VC9 x86 ...

  5. 详解Mac睡眠模式设置

    详解Mac睡眠模式设置 原文链接:http://www.insanelymac.com/forum/index.php?showtopic=281945 需要说明的是,首先这篇文章是针对已经能够成功睡 ...

  6. js和JQuery中的获取宽、高、位置等方法整理

    1.获取当前窗口宽度区别(需要注意的是用的window还是document)JQuery:console.log($(window).width()); //获取窗口可视区域的宽度 console.l ...

  7. 使用Spring AOP实现业务依赖解耦

    Spring IOC用于解决对象依赖之间的解耦,而Spring AOP则用于解决业务依赖之间的解耦: 统一在一个地方定义[通用功能],通过声明的方式定义这些通用的功能以何种[方式][织入]到某些[特定 ...

  8. 【OS_Linux】Linux 基本命令整理

    1. 查看目录文件:ls2. 打印当前工作目录:pwd3. 查看文件内容:cat 文件名4. 打开编辑器:vim 文件名 1 2 3 4 5 修改:按Insert键 退出修改模式:按Esc 键 进入输 ...

  9. Springboot(二)-application.yml默认的配置项以及读取自定义配置

    写在前面 ===== spring-boot 版本:2.0.0.RELEASE ===== 读取自定义配置 1.配置文件:sys.properties supply.place=云南 supply.c ...

  10. IE6,7,8,9还有火狐浏览器的兼容

    /*FF.Opear等支持Web标准的浏览器*/#header {        margin-top: 23px;        margin-bottom: 23px;}/*IE6浏览器*/*ht ...