题目背景

GD是一个热衷于寻求美好事物的人,一天他拿到了一个美丽的序列。

题目描述

为了研究这个序列的美丽程度,GD定义了一个序列的“美丽度”和“美丽系数”:对于这个序列的任意一个区间[l,r],这个区间的“美丽度”就是这个区间的长度与这个区间的最小值的乘积,而整个序列的“美丽系数”就是它的所有区间的“美丽度”的最大值。现在GD想要你帮忙计算这个序列的“美丽系数”。

输入输出格式

输入格式:

第一行一个整数n,代表序列中的元素个数。 第二行n个整数a1、a2„an,描述这个序列。

输出格式:

一行一个整数,代表这个序列的“美丽系数”。

输入输出样例

输入样例#1: 复制

3
1 2 3
输出样例#1: 复制

4

说明

样例解释 选取区间[2,3],可以获得最大“美丽系数”为2*2=4。 数据范围 对于20%的数据,n<=2000; 对于60%的数据,n<=200000; 对于100%的数据,1<=n<=2000000,0<=ai<=2000000。 提示 你可能需要一个读入优化。

用线段树+维护区间最小值,构造一颗笛卡尔树+卡时可以过

#include<cstdio>
#include<cstdlib>
#include<algorithm>
using namespace std;
#define LL long long
inline int read() {
int x=;
char c=getchar();
while(c<''||c>'')c=getchar();
while(c<=''&&c>='')x=x*+c-'',c=getchar();return x;
}
const int INF = 0x7fffffff;
const int maxn = ;
int a[maxn];
int n;LL ans=;
struct node{
int w,pos;
}tree[maxn<<];
inline void update(int rt) {
tree[rt].pos=tree[rt<<].w < tree[rt<<|].w ? tree[rt<<].pos :tree[rt<<|].pos;
tree[rt].w=min(tree[rt<<].w,tree[rt<<|].w);
}
void build(int l,int r,int rt) {
if(l==r) {
tree[rt].w=a[l]=read();tree[rt].pos=l;return;
}
int mid=(l+r)>>;
build(l,mid,rt<<);
build(mid+,r,rt<<|);
update(rt);
}
int query(int l,int r,int rt,int tl,int tr) {
if(tl<=l&&tr>=r) return tree[rt].pos;
int a1,m=0x7fffffff;
int mid=(l+r)>>;
if(tl<=mid){
int tmp=query(l,mid,rt<<,tl,tr);
if(m>a[tmp])m=a[tmp],a1=tmp;
}
if(tr>mid) {
int tmp=query(mid+,r,rt<<|,tl,tr);
if(m>a[tmp])m=tree[tmp].w,a1=tmp;
}
return a1;
}
int cnt=;
void dfs(int p,int l,int r) {
++cnt;
if(cnt==) {
printf("%lld\n",ans);exit();
}
if(l==r) {
ans=a[l]>ans?a[l]:ans;return;
}
ans=ans<(LL)(r-l+)*a[p]?(LL)(r-l+)*a[p]:ans;
if(p>l)dfs(query(,n,,l,p-),l,p-);
if(p<r)dfs(query(,n,,p+,r),p+,r);
}
int main() {
n=read();int minn=INF,pos;
build(,n,);
dfs(tree[].pos,,n);
printf("%lld\n",ans);
return ;
}

线段树

维护两个单调队列,求出当每个点为最小值是向左右扩展的最大距离

#include<cstdio>
#include<algorithm>
using namespace std;
#define LL long long
const int maxn= ;
#ifdef WIN32
#define lld "I64d"
#else
#define lld "lld"
#endif
inline int read() {
int x=;
char c=getchar();
while(c<''||c>'')c=getchar();
while(c<=''&&c>='')x=x*+c-'',c=getchar();return x;
}
int a[maxn],b[maxn];
int l[maxn],r[maxn],tmp[maxn],q[maxn];
int n,m;
void work(int c[] ,int d[]) {
q[]=c[]; tmp[]=;
int head=,tail=;
for(int i=;i<=n;++i) {
while(head<=tail&&q[tail]>c[i]) d[tmp[tail--]]=i-;
q[++tail]=c[i];
tmp[tail]=i;
}
while(head<=tail) d[tmp[head++]]=n;
}
int main() {
LL ans=;
n=read();
for(int i=;i<=n;++i)
a[i]=read(),b[n-i+]=a[i];
work(a,r);
work(b,l);
for(int i=;i<=n;++i) tmp[i]=l[i];
for(int i=;i<=n;++i) l[n-i+]=n-tmp[i]+;
for(int i=;i<=n;++i) ans=max(ans,1ll*a[i]*(r[i]-l[i]+));
printf("%lld\n",ans);
return ;
}

单调队列

luogu P2659 美丽的序列的更多相关文章

  1. 洛谷P2659 美丽的序列 单调栈模板

    P2659 美丽的序列 题目链接 https://www.luogu.org/problemnew/show/P2659 题目描述 为了研究这个序列的美丽程度,GD定义了一个序列的"美丽度& ...

  2. P2659 美丽的序列

    P2659 美丽的序列对于当前的最小值,找到最大的左右边界,然后更新答案.用单调队列确定左右边界,O(n)做法. #include<iostream> #include<cstdio ...

  3. 洛谷 P2659 美丽的序列 解题报告

    P2659 美丽的序列 题目背景 GD是一个热衷于寻求美好事物的人,一天他拿到了一个美丽的序列. 题目描述 为了研究这个序列的美丽程度,GD定义了一个序列的"美丽度"和" ...

  4. 洛谷——P2659 美丽的序列

    P2659 美丽的序列 单调栈维护区间最小值,单调递增栈维护区间最小值, 考虑当前数对答案的贡献,不断加入数,如果加入的数$>$栈顶,说明栈顶的元素对当前数所在区间是有贡献的,同时加入当前的数. ...

  5. 笛卡尔树-P2659 美丽的序列

    P2659 美丽的序列 tag 笛卡尔树 题意 找出一个序列的所有子段中子段长度乘段内元素最小值的最大值. 思路 我们需要找出所有子段中贡献最大的,并且一个子段的贡献为其长度乘区间最小值. 这--不就 ...

  6. 洛谷P2659 美丽的序列

    题目 该题目可以用辅助数组l[i], r[i]来指向以data[i]为最小值的左端点和右端点.然后最后枚举每个data[i]寻找每个data[i]的美丽值的最大值. 然后辅助数组可以用单调栈求出. # ...

  7. P2659 美丽的序列 (单调栈)

    题目链接 Solution 直接考虑单调栈处理出每一个点作为最小值的区间长度. 然后 \(O(n)\) 找一遍最大值即可. 记得开 long long,以及要注意 \(0\) 的问题. Code #i ...

  8. [Luogu 2023] AHOI2009 维护序列

    [Luogu 2023] AHOI2009 维护序列 恕我冒昧这和线段树模板二有个琴梨区别? #include <cstdio> int n,m; long long p; class S ...

  9. [Luogu 1963] NOI2009 变换序列

    [Luogu 1963] NOI2009 变换序列 先%Dalao's Blog 什么?二分图匹配?这个确定可以建图? 「没有建不成图的图论题,只有你想不出的建模方法.」 建图相当玄学,不过理解大约也 ...

随机推荐

  1. 理解GloVe模型(Global vectors for word representation)

    理解GloVe模型 概述 模型目标:进行词的向量化表示,使得向量之间尽可能多地蕴含语义和语法的信息.输入:语料库输出:词向量方法概述:首先基于语料库构建词的共现矩阵,然后基于共现矩阵和GloVe模型学 ...

  2. ios之UISegmentedcontol

    初始化UISegmentedControl NSArray *arr = [[NSArray alloc]initWithObjects:@"轻拍",@"长按" ...

  3. MySQL丨01丨数据库基本概念

    以前记录数据可能很少也很简单,比如说老王借了老李半斤肉,这样的数据老李直接就写到墙上就行了. 后来数据多了人们就以表格的方式开始记录,写到一张A4纸上,比如学生的档案,有表头和序号等. 表头里有姓名. ...

  4. 【Java_基础】cmd下使用java命令运行class文件提示“错误:找不到或无法加载主类“的问题分析

    1.问题如下 当在命令行使用java命令执行字节码文件时提示“错误:找不到或无法加载主类” 2. 问题分析 这是由于在运行时类的全名应该是包名+类名,例如在包net.xsoftlab.baike下的类 ...

  5. A Fast and Easy to Use AES Library

    http://www.codeproject.com/Articles/57478/A-Fast-and-Easy-to-Use-AES-Library Introduction EfAesLib i ...

  6. python实现FTP

    原文地址:https://www.cnblogs.com/huangxm/p/6274645.html#undefined FTP服务的主动模式和被动模式 在开始之前,先聊一下FTP的主动模式和被动模 ...

  7. 一、Numpy库与多维数组

    # Author:Zhang Yuan import numpy as np '''重点摘录: 轴的索引axis=i可以理解成是根据[]层数来判断的,0表示[],1表示[[]]... Numpy广播的 ...

  8. Google 超分辨率技术 RAISR

    每天都有数以百万计的图片在网络上被分享.储存,用户借此探索世界,研究感兴趣的话题,或者与朋友家人分享假期照片.问题是,大量的图片要嘛被照相设备的像素所限制,要嘛在手机.平板或网络限制下被人为压缩,降低 ...

  9. Android自动化测试Uiautomator--UiObject接口简介

    UiObject可以理解为控件的对象,主要对对象进行操作.按照一定条件(UiSelector)获取UiObject对象,之后对对象进行相应的操作,如下图所示. 对于对象的操作主要有点击/长按.拖动/滑 ...

  10. Python标准库之csv(1)

    Python标准库之csv(1) 1.Python处理csv文件之csv.writer() import csv def csv_write(path,data): with open(path,'w ...