问题描述
Tom放学回家的路上,看到天空中出现一个矩阵。Tom发现,如果矩阵的行、列从0开始标号,第i行第j列的数记为ai,j,那么ai,j=Cji
如果i < j,那么ai,j=0
Tom突发奇想,想求一个矩形范围内所有数的和。Tom急着回家,当然不会自己算,所以就把任务交给你了。
因为数可能很大,答案对一个质数p取模。
输入描述
输入包含多组数据(大约8组)。每组数据只有一行五个非负整数,x1、y1、x2、y2、p,你要求的是∑x2i=x1∑y2j=y1ai,j模p后的值。
x1≤x2≤105,y1≤y2≤105,2≤p≤109
输出描述
对于每组数据输出一行,答案模p。
输入样例
0 0 1 1 7
1 1 2 2 13
1 0 2 1 2
输出样例
3
4
1 对于一个 矩阵的排列组合,C(X1,Y1) +C(X1,Y1+1)+....+(C(X1,Y2)=C(X1+1,Y2)-C(X1,Y1+1);
每一列都可以这样化,
所以后面就是:C(X,Y)%P的问题,这里证明LUCAS定律
C(X,Y)=【C(X/P,Y/P)+(X%P,Y%P)】%P;
来自百度百科:

复习lucas
 #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
#include <vector>
#include <cmath>
#define LL long long
using namespace std;
const int N = ;
const int mod = ;
LL f[N],num[N];
LL p;
void init()
{
f[]=;
for(int i=;i<=N-;i++)
{
int tmp=i;
num[i]=num[i-];
while(tmp%p==)
{
num[i]++;
tmp/=p;
}
f[i]=f[i-]*tmp%p;
}
} LL inv(LL a,LL n)
{
LL res=;
a%=p;
while(n)
{
if(n&)res=res*a%p;
a=a*a%p;
n>>=;
}
return res;
} LL calc(int a,int b)
{
if(a<b)return ;
if(num[a]-num[b]-num[a-b])return ;
else return f[a]*inv(f[b],p-)%p*inv(f[a-b],p-)%p;
}
//先提取出阶乘里面的P 后面才能求逆元
int main()
{
int x1,y1,x2,y2; while(scanf("%d%d%d%d%I64d",&x1,&y1,&x2,&y2,&p)>)
{
init();
LL ans=;
for(int i=y1;i<=y2;i++)
{
ans=((ans+calc(x2+,i+)-calc(x1,i+))%p+p)%p;
}
printf("%I64d\n",ans);
}
}

因为p是素数,所以a!=0 关于p的逆为 a^-1=a^(p-2)%p;小费马定理

‘因为p 很小 所以要先预处理 阶乘可不可过能能mod p==0;


												

Bestcoder Tom and matrix的更多相关文章

  1. Hdu5226 Tom and matrix

    Tom and matrix Time Limit: 3000/1500 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)To ...

  2. 组合数(Lucas定理) + 快速幂 --- HDU 5226 Tom and matrix

    Tom and matrix Problem's Link:   http://acm.hdu.edu.cn/showproblem.php?pid=5226 Mean: 题意很简单,略. analy ...

  3. HDU 5226 Tom and matrix(组合数学+Lucas定理)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5226 题意:给一个矩阵a,a[i][j] = C(i,j)(i>=j) or 0(i < ...

  4. HDU-5226 Tom and matrix(组合数求模)

    一.题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=5226 二.题意 给一个大矩阵,其中,$a[i][j] = C_i^j$.输入5个参数,$x_1, ...

  5. BestCoder Round #40

    T1:Tom and pape (hdu 5224) 题目大意: 给出一个矩形面积N,求周长的最小值.(长&&宽&&面积都是正整数) N<=109 题解: 没啥好 ...

  6. WGCNA构建基因共表达网络详细教程

    这篇文章更多的是对于混乱的中文资源的梳理,并补充了一些没有提到的重要参数,希望大家不会踩坑. 1. 简介 1.1 背景 WGCNA(weighted gene co-expression networ ...

  7. HDU5569/BestCoder Round #63 (div.2) C.matrix DP

    matrix Problem Description Given a matrix with n rows and m columns ( n+m is an odd number ), at fir ...

  8. BestCoder Round #81 (div.2) B Matrix

    B题...水题,记录当前行是由原矩阵哪行变来的. #include<cstdio> #include<cstring> #include<cstdlib> #inc ...

  9. acdeream Matrix Multiplication

    D - Matrix Multiplication Time Limit: 2000/1000MS (Java/Others) Memory Limit: 128000/64000KB (Java/O ...

随机推荐

  1. javaEE(5)_Cookie和Session

    一.会话 1.什么是会话?会话可简单理解为:用户开一个浏览器,点击多个超链接,访问服务器多个web资源,然后关闭浏览器,整个过程称之为一个会话.类似打电话一样.2.会话过程中要解决的一些问题?每个用户 ...

  2. XAMPP虚拟主机配置--20150423

    你需要一些顶级域名访问方式来访问你本地的项目文件而不是目录方式访问,这时候就需要配置虚拟主机,给你的目录绑定一个域名(本地的话可以通过修改 hosts 文件随便绑定什么域名比如 www.a.com 或 ...

  3. hihoCode-1043-完全背包

    我们定义:best(i,x)代表i件以前的物品已经决定好选择多少件,并且在剩余奖券x的情况下的最优解. 我们可以考虑最后一步,是否再次选择i物品,在不超过持有奖券总额的情况下.上面的第二个式子的k是大 ...

  4. RN调试

    https://facebook.github.io/react-native/docs/debugging.html 热加载 RN的目标是极致的开发体验,修改文件后能在1秒内看到变化,通过以下三个特 ...

  5. react事件代理

    参考:https://github.com/youngwind/blog/issues/107 首先回顾以下原生事件的两个方法:event.stopImmediatePropagation 和 eve ...

  6. input标签内容改变触发的事件

    原生方法 onchange事件 <input type="text" onchange="onc(this)"> function onc(data ...

  7. 《零基础入门学习Python》【第一版】视频课后答案第003讲

    测试题答案: 0. 以下哪个变量的命名不正确?为什么? (A) MM_520 (B) _MM520_ (C) 520_MM (D) _520_MM(C)选项不正确,因为 Python 中的变量名不能以 ...

  8. (转)5个Xcode开发调试技巧

    1.Enable NSZombie Objects(开启僵尸对象) Enable NSZombie Objects可能是整个Xcode开发环境中最有用的调试技巧.这个技巧非常非常容易追踪到重复释放的问 ...

  9. hibernate 学习

    hibernate.cg.xml 可以通过myeclipse自动生成,添加数据库信息: <?xml version='1.0' encoding='UTF-8'?> <!DOCTYP ...

  10. 【SaltStack】一些常用模块举例

    一.用户和用户组模块 说明:该sls文件用来在Minion端创建nginx用户和nginx用户组,当创建nginx用户时,对nginx用户组是否已存在做判断! (1)  /srv/salt/creat ...