BZOJ 4815 数论
今年的重庆省选?
具体就是,对于每次修改,A[p,q]这个位置, 设d=gcd(p,q) ,则 gcd为d的每一个格子都会被修改,且他们之间有个不变的联系
A[p,q]/p/q==A[k,t]/k/t 所以只要记录对于gcd为d的所有格子,只要保存A[d][d]的值就可以了。
那么求前k行k列的值ans,则所有gcd(p,q)==d的A[p,q]对答案的贡献就是 {
设k'=k/d; (下取整) f[k']*A[p,q]/(p/d)/(q/d)
}
首先有个基本结论(当n>1时):
( 若x与n互质,则n-x也与n互质 → 与n互质的数的平均数是n/2)
然后推得 f[n]=
代码如下:【BZOJ里最短了吧。。跑的也挺快】
#include <bits/stdc++.h>
#define LL long long
using namespace std;
const LL mo=;
int S,n,m,k,t,p,q,a[],f[],op[][];
LL d,x,ans;
int gcd(int x,int y){ return y?gcd(y,x%y):x;}
int main(){
scanf("%d%d",&m,&n); f[]=;
for (int i=;i<=n;++i){
if (!a[i]) a[++t]=i,f[i]=i-;
for (int j=;j<=t;++j){
x=a[j]*i; if (x>n) break; a[x]=;
if (!(i%a[j])) {f[x]=f[i]*a[j]; break; }else f[x]=f[i]*f[a[j]];
}
}
for (int i=;i<=n;++i) f[i]=((LL)i*i%mo*f[i]+f[i-])%mo;
for (int i=;i<=m;++i){
scanf("%d%d%lld%d",&p,&q,&x,&k);
d=gcd(p,q); p/=d; q/=d;
op[i][]=d; op[i][]=(x/p/q-d*d)%mo;
if (op[i][]<) op[i][]+=mo;
ans=(LL)(+k)*k/%mo;
ans=ans*ans%mo;
for (int j=;j<=i;++j)
if (op[j][]){
if (j!=i&&op[j][]==d){ op[j][]=; continue;}
ans+=(LL)f[k/op[j][]]*op[j][]%mo;
if (ans>=mo) ans-=mo;
}
printf("%lld\n",ans);
}
return ;
}
杀老师
然后附 查了一个下午的 智障错误。。
看第21行。x/p/q-d*d, 原来这个d是不开LL的。然而 d*d可能会爆int 所以,以前一直下意识的以为只要表达式把(LL)x放最前面 后面就会自动转成LL了 。现在看来是要留个心眼了。。
BZOJ 4815 数论的更多相关文章
- bzoj 4815: [Cqoi2017]小Q的表格 [数论]
4815: [Cqoi2017]小Q的表格 题意: 单点修改,查询前缀正方形和.修改后要求满足条件f(a,b)=f(b,a), b×f(a,a+b)=(a+b)*f(a,b) 一开始sb了认为一次只会 ...
- bzoj 4815 [Cqoi2017]小Q的表格——反演+分块
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4815 大概就是推式子的时候注意有两个边界都是 n ,考虑变成 2*... 之类的. 分块维护 ...
- BZOJ 4815 CQOI2017 小Q的表格 欧拉函数+分块
题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=4815 题意概述:要认真概述的话这个题就出来了... 分析: 首先分析题目,认真研究一下修 ...
- bzoj 4815 小Q的表格 —— 反演+分块
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4815 思路就和这里一样:https://blog.csdn.net/leolyun/arti ...
- BZOJ 2219 数论之神 (CRT推论+BSGS+原根指标)
看了Po神的题解一下子就懂了A了! 不过Po神的代码出锅了-solve中"d-temp"并没有什么用QwQQwQQwQ-应该把模数除以p^temp次方才行. 来自BZOJ讨论板的h ...
- BZOJ 2219: 数论之神
题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2219 N次剩余+CRT... 就是各种奇怪的分类讨论.. #include<cstrin ...
- bzoj 1406 数论
首先问题的意思就是在找出n以内的所有x^2%n=1的数,那么我们可以得到(x+1)(x-1)=y*n,那么我们知道n|(x+1)(x-1),我们设n=a*b,那么我们对于任意的a,我们满足n%a==0 ...
- bzoj 3453 数论
首先我们知道对于f(x)来说,它是一个k次的多项式,那么f(x)的通项公式可以表示成一个k+1次的式子,且因为f(x)没有常数项,所以我们设这个式子为 f(x)=Σ(a[i]*x^i) (1<= ...
- BZOJ 4815 [Cqoi2017]小Q的表格 ——欧拉函数
把式子化简一波. 发现一个比较厉害的性质:每个点只能影响到行列下标$gcd$与它相同的点. 然后就可以计算$\sum_{g<=k}f(g,g)*\sum_{i<=k}\sum_{j< ...
随机推荐
- 【优先级队列】Southwestern Europe Regional Contest Canvas Painting
https://vjudge.net/contest/174235#problem/D [题意] 给定n个已知size的帆布,要给这n块帆布涂上不同的颜色,规则是这样的: 每次选择一种颜色C 对于颜色 ...
- 运行hadoop自带的计算圆周率异常
运行hadoop2 自带的圆周率计算方法时,报错,找了半天,原来是在配置hadoop临时目录时,没有给权限,找到配置的hadoop临时目录文件夹,修改权限即可 Application applicat ...
- BZOJ2038 (莫队)
BZOJ2038: 小Z的袜子 Problem : N只袜子排成一排,每次询问一个区间内的袜子种随机拿两只袜子颜色相同的概率. Solution : 莫队算法真的是简单易懂又暴力. 莫队算法用来离线处 ...
- python学习之-- 事件驱动模型
目前主流的网络驱动模型:事件驱动模型 事件驱动模型:也属于生产者/消费者结构,通过一个队列,保存生产者触发的事件,队列另一头是一个循环从队列里不断的提取事件.大致流程如下:1:首先生成一个事件消息队列 ...
- 学习日常笔记<day12>jsp基础
1.Jsp基础 1.1Jsp引入 Servlet的作用:用java语言开发动态资源的技术 Jsp的作用:用java语言(+html语言)开发动态资源的技术 jsp就是servlet 1.2Jsp的特点 ...
- Java课堂测试--实现ATM的基本操作体会
9月20的周四的Java课堂第一节课上就是有关于实现ATM的考试内容,在实现的过程中我了解到自己本身还是有很多的不足之处,例如在实现工程方面的相似性上面还有些许就的欠缺,再者就是回宿舍拿电源的原因导致 ...
- 海康设备网络SDK 编程
http://www.cnblogs.com/qtblog/p/5366276.html http://www.hikvision.com/Cn/download_more_401.html
- Atomic Builtins - Using the GNU Compiler Collection (GCC) GCC 提供的原子操作
http://gcc.gnu.org/onlinedocs/gcc-4.4.3/gcc/Atomic-Builtins.html gcc从4.1.2提供了__sync_*系列的built-in函数,用 ...
- JNI返回复杂对象之中的一个
需求: 首先说需求.近期接手一个项目.要在底层解析二进制数据,数据结构比較负责,因为server是c++server,加之開始没有考虑到移动端开发,所以协议有点扯蛋.大体是这种,一个数据包里面是map ...
- 在调试C++程序是出现这个问题的解决方案illegal pure syntax, must be '= 0'
笔者在调试c++的时候遇见了这个问题 E:\Data Struct\SqString\新建 文本文档.cpp(5) : error C2258: illegal pure syntax, must b ...