BZOJ 4815 数论
今年的重庆省选?
具体就是,对于每次修改,A[p,q]这个位置, 设d=gcd(p,q) ,则 gcd为d的每一个格子都会被修改,且他们之间有个不变的联系
A[p,q]/p/q==A[k,t]/k/t 所以只要记录对于gcd为d的所有格子,只要保存A[d][d]的值就可以了。
那么求前k行k列的值ans,则所有gcd(p,q)==d的A[p,q]对答案的贡献就是 {
设k'=k/d; (下取整) f[k']*A[p,q]/(p/d)/(q/d)
}
首先有个基本结论(当n>1时):
( 若x与n互质,则n-x也与n互质 → 与n互质的数的平均数是n/2)
然后推得 f[n]=
代码如下:【BZOJ里最短了吧。。跑的也挺快】
#include <bits/stdc++.h>
#define LL long long
using namespace std;
const LL mo=;
int S,n,m,k,t,p,q,a[],f[],op[][];
LL d,x,ans;
int gcd(int x,int y){ return y?gcd(y,x%y):x;}
int main(){
scanf("%d%d",&m,&n); f[]=;
for (int i=;i<=n;++i){
if (!a[i]) a[++t]=i,f[i]=i-;
for (int j=;j<=t;++j){
x=a[j]*i; if (x>n) break; a[x]=;
if (!(i%a[j])) {f[x]=f[i]*a[j]; break; }else f[x]=f[i]*f[a[j]];
}
}
for (int i=;i<=n;++i) f[i]=((LL)i*i%mo*f[i]+f[i-])%mo;
for (int i=;i<=m;++i){
scanf("%d%d%lld%d",&p,&q,&x,&k);
d=gcd(p,q); p/=d; q/=d;
op[i][]=d; op[i][]=(x/p/q-d*d)%mo;
if (op[i][]<) op[i][]+=mo;
ans=(LL)(+k)*k/%mo;
ans=ans*ans%mo;
for (int j=;j<=i;++j)
if (op[j][]){
if (j!=i&&op[j][]==d){ op[j][]=; continue;}
ans+=(LL)f[k/op[j][]]*op[j][]%mo;
if (ans>=mo) ans-=mo;
}
printf("%lld\n",ans);
}
return ;
}
杀老师
然后附 查了一个下午的 智障错误。。
看第21行。x/p/q-d*d, 原来这个d是不开LL的。然而 d*d可能会爆int 所以,以前一直下意识的以为只要表达式把(LL)x放最前面 后面就会自动转成LL了 。现在看来是要留个心眼了。。
BZOJ 4815 数论的更多相关文章
- bzoj 4815: [Cqoi2017]小Q的表格 [数论]
4815: [Cqoi2017]小Q的表格 题意: 单点修改,查询前缀正方形和.修改后要求满足条件f(a,b)=f(b,a), b×f(a,a+b)=(a+b)*f(a,b) 一开始sb了认为一次只会 ...
- bzoj 4815 [Cqoi2017]小Q的表格——反演+分块
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4815 大概就是推式子的时候注意有两个边界都是 n ,考虑变成 2*... 之类的. 分块维护 ...
- BZOJ 4815 CQOI2017 小Q的表格 欧拉函数+分块
题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=4815 题意概述:要认真概述的话这个题就出来了... 分析: 首先分析题目,认真研究一下修 ...
- bzoj 4815 小Q的表格 —— 反演+分块
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4815 思路就和这里一样:https://blog.csdn.net/leolyun/arti ...
- BZOJ 2219 数论之神 (CRT推论+BSGS+原根指标)
看了Po神的题解一下子就懂了A了! 不过Po神的代码出锅了-solve中"d-temp"并没有什么用QwQQwQQwQ-应该把模数除以p^temp次方才行. 来自BZOJ讨论板的h ...
- BZOJ 2219: 数论之神
题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2219 N次剩余+CRT... 就是各种奇怪的分类讨论.. #include<cstrin ...
- bzoj 1406 数论
首先问题的意思就是在找出n以内的所有x^2%n=1的数,那么我们可以得到(x+1)(x-1)=y*n,那么我们知道n|(x+1)(x-1),我们设n=a*b,那么我们对于任意的a,我们满足n%a==0 ...
- bzoj 3453 数论
首先我们知道对于f(x)来说,它是一个k次的多项式,那么f(x)的通项公式可以表示成一个k+1次的式子,且因为f(x)没有常数项,所以我们设这个式子为 f(x)=Σ(a[i]*x^i) (1<= ...
- BZOJ 4815 [Cqoi2017]小Q的表格 ——欧拉函数
把式子化简一波. 发现一个比较厉害的性质:每个点只能影响到行列下标$gcd$与它相同的点. 然后就可以计算$\sum_{g<=k}f(g,g)*\sum_{i<=k}\sum_{j< ...
随机推荐
- 67. @Transactional的类注入失败【从零开始学Spring Boot】
[从零开始学习Spirng Boot-常见异常汇总] Spring的代理模式有两种:java自带的动态代理模式和cglib代理模式,cglib代码模式适用于没有接口的类,而java自带适用于接口类,默 ...
- [Go]条件语句
package main import ( "io/ioutil" "fmt" ) //条件语句 //if的条件语句不需要括号 //if的条件里可以赋值,if的 ...
- 洛谷P3973 - [TJOI2015]线性代数
Portal Description 给定一个\(n\times n\)的矩阵\(B\)和一个\(1×n\)的矩阵\(C\).求出一个\(1×n\)的01矩阵\(A\),使得\(D=(A×B-C)×A ...
- 【尺取】HDU String
http://acm.hdu.edu.cn/showproblem.php?pid=5672 [题意] 给定一个小写英语字母组成的字符串,求这个字符串一共包含多少个至少有m个不同字母的连续子序列 [思 ...
- 背包DP 整理
题目 有N件物品和一个容量为V的背包.第i件物品的费用是c[i],价值是w[i].求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大. 基本思路 这是最基础的背包问题,特点是: ...
- 【2018 Multi-University Training Contest 3】
01:https://www.cnblogs.com/myx12345/p/9420198.html 02: 03: 04:https://www.cnblogs.com/myx12345/p/940 ...
- ESI 动态缓存技术[转载]
任何一个Web网站的内容都是在不断更新和变化,但这并不意味这这个网站的内容就是动态内容,事实上,动态的内容是指用户每次点击 相同的链接时取的的内容是由Web服务器应用程序生成的,如常见得ASP,JSP ...
- POJ 3684 Physics Experiment
和蚂蚁问题类似. #include<cstdio> #include<cstring> #include<cmath> #include<vector> ...
- 通过socket过去本地ip,port和远端ip,port
struct sockaddr addr;struct sockaddr_in* addr_v4;int addr_len = sizeof(addr); //获取local ip and portZ ...
- 如何解决XML文件中的警告提示“No grammar constraints (DTD or XML Schema) referenced in the document.”
解决方法:加上 <!DOCTYPE xml> <?xml version="1.0" encoding="UTF-8"?> <!D ...