Beans

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)

Total Submission(s): 3521    Accepted Submission(s): 1681

Problem Description

Bean-eating is an interesting game, everyone owns an M*N matrix, which is filled with different qualities beans. Meantime, there is only one bean in any 1*1 grid. Now you want to eat the beans and collect
the qualities, but everyone must obey by the following rules: if you eat the bean at the coordinate(x, y), you can’t eat the beans anyway at the coordinates listed (if exiting): (x, y-1), (x, y+1), and the both rows whose abscissas are x-1 and x+1.






Now, how much qualities can you eat and then get ?

 

Input

There are a few cases. In each case, there are two integer M (row number) and N (column number). The next M lines each contain N integers, representing the qualities of the beans. We can make sure that
the quality of bean isn't beyond 1000, and 1<=M*N<=200000.
 

Output

For each case, you just output the MAX qualities you can eat and then get.
 

Sample Input

4 6
11 0 7 5 13 9
78 4 81 6 22 4
1 40 9 34 16 10
11 22 0 33 39 6
 

Sample Output

242
 

Source

2009 Multi-University Training Contest 4 -
Host by HDU




题目链接:

pid=2845">http://acm.hdu.edu.cn/showproblem.php?

pid=2845



题目大意:在一个矩阵中选择一些数,要求和最大,假设选择(x,y)位置的数。则(x, y+1),(x,y-1)位置不可选。第x+1和第x-1行都不可选



题目分析:题目给了m*n的范围,就是不让你开二维开开心心切掉。只是不影响。一维照样做。先对于每一行dp一下,求出当前行能取得的最大值

tmp[j] = max(tmp[j - 1],a[i + j - 1] + tmp[j - 2])第一个表示不选第i行第j列得数字。第二个表示选,取最大,则最后tmp[m]为当前行最大的

然后由于相邻两行不能同一时候取,我再对行做一次dp

 dp[i] = max(dp[i - 1], dp[i - 2] + row[i]),第一个表示不选第i行,第二个表示选第i行,取最大,则最后dp[cnt - 1]即为答案

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
int const MAX = 2 * 1e5 + 5;
int row[MAX], a[MAX], dp[MAX], tmp[MAX]; int main()
{
int n, m;
while(scanf("%d %d", &n, &m) != EOF)
{
memset(tmp, 0, sizeof(tmp));
memset(dp, 0, sizeof(dp));
for(int i = 1; i <= m * n; i++)
scanf("%d", &a[i]);
int cnt = 1;
for(int i = 1; i <= m * n; i += m)
{
for(int j = 2; j <= m; j++)
{
tmp[1] = a[i];
tmp[j] = max(tmp[j - 1], a[i + j - 1] + tmp[j - 2]);
}
row[cnt ++] = tmp[m];
}
dp[1] = row[1];
for(int i = 2; i < cnt; i++)
dp[i] = max(dp[i - 1], dp[i - 2] + row[i]);
printf("%d\n", dp[cnt - 1]);
}
}

HDU 2845 Beans (两次线性dp)的更多相关文章

  1. HDU 2845 Beans (DP)

    Beans Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit Status ...

  2. HDU 2845 Beans (DP)

    Problem Description Bean-eating is an interesting game, everyone owns an M*N matrix, which is filled ...

  3. hdu 2845——Beans——————【dp】

    Beans Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submi ...

  4. HDU 2845 Beans(dp)

    Problem Description Bean-eating is an interesting game, everyone owns an M*N matrix, which is filled ...

  5. HDU 2845 Beans (动态调节)

    Beans Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Subm ...

  6. hdu 2845 Beans 2016-09-12 17:17 23人阅读 评论(0) 收藏

    Beans Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Subm ...

  7. Hdu 2845 Beans

    Beans Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submi ...

  8. hdu 2845 Beans(最大不连续子序列和)

    Problem Description Bean-eating is an interesting game, everyone owns an M*N matrix, which is filled ...

  9. hdu 5094 Maze 状态压缩dp+广搜

    作者:jostree 转载请注明出处 http://www.cnblogs.com/jostree/p/4092176.html 题目链接:hdu 5094 Maze 状态压缩dp+广搜 使用广度优先 ...

随机推荐

  1. python学习第一天 计算机基础知识

    目录 什么是编程语言 什么是编程? 为什么要编程? 计算机5大组成分别有什么作用? qq启动的流程? 建议相关学习 课外 什么是编程语言 什么是编程语言? python和中文.英语一样,都是一门语言, ...

  2. Python函数的装饰器

    函数的装饰器. 1. 装饰器 开闭原则: 对功能的扩展开放 对代码的修改是封闭 通用装饰器语法: def wrapper(fn): def inner(*args, **kwargs): # 聚合 & ...

  3. day22面向对象

    面向对象编程: 1.什么是面向对象 面向过程(编程思想): 过程,解决问题的步骤,流程即第一步做什么,第二步做什么 将复杂问题,拆成若干小问题,按照步骤一一解决,将复杂问题流程化(为其制定固定的实现流 ...

  4. PAT Basic 1003

    1003 我要通过! “答案正确”是自动判题系统给出的最令人欢喜的回复.本题属于PAT的“答案正确”大派送 —— 只要读入的字符串满足下列条件,系统就输出“答案正确”,否则输出“答案错误”. 得到“答 ...

  5. Handler处理器和自定义Opener

    Handler处理器 和 自定义Opener opener是 urllib2.OpenerDirector 的实例,我们之前一直都在使用的urlopen,它是一个特殊的opener(也就是模块帮我们构 ...

  6. angular中几种加载css的方法

    1.Style URLs in Metadata We can load styles from external CSS files by adding a styleUrls attribute ...

  7. python接口自动化测试二十七:密码MD5加密

    # MD5加密 # 由于MD5模块在python3中被移除# 在python3中使用hashlib模块进行md5操作import hashlib def MD5(str): # 创建md5对象 hl ...

  8. Unity3D for iOS初级教程:Part 1/3

    转自Unity 3d for ios 这篇文章还可以在这里找到 英语 Learn how to use Unity to make a simple 3D iOS game! 这篇教材是来自教程团队成 ...

  9. [luoguP3110] [USACO14DEC]驮运Piggy Back(SPFA || BFS)

    传送门 以 1,2,n 为起点跑3次 bfs 或者 spfa 那么 ans = min(ans, dis[1][i] * B + dis[2][i] * E + dis[3][i] * P) (1 & ...

  10. gevent 使用踩坑

    简单介绍 gevent 基本概念:   调度器: hub          上下文切换管理: switch          主循环: loop   协程: greenlet gevent 特性:  ...