ZOJ 3874 Permutation Graph 分治NTT
Permutation Graph
Time Limit: 2 Seconds Memory Limit: 65536 KB
Edward has a permutation {a1, a2, … an}. He finds that if he connects each pair (ai, aj) such that i < j and ai > aj, he will get a graph.
For example, if the permutation is {2, 3, 1, 4}, then 1 and 2 are connected and 1 and 3 are connected.
Edward lost his permutation, but he does know the connected components of the corresponding graph. He wants to know how many permutations will result in the same connected components.
Note that two vertices u, v belong to the same connected component if there exists a sequence of vertices starting with u and ending with v such that every two subsequent vertices in the sequence are connected by an edge.
Input
There are multiple test cases. The first line of input contains an integer T indicating the number of test cases. For each test case:
The first line contains two integers n, m (1 ≤ m ≤ n ≤ 100000), indicating the length of the permutation and the number of connected components in the graph.
Each of the following m lines contains an integer ci which denotes the size of i-th connected component, followed by ci distinct integers vi,1, vi,2, … vi,ci which denotes the connected component (1 ≤ ci, vi,1, vi,2, … vi,ci ≤ n).
It is guaranteed that every number will appear in exact one connected component and c1 + c2 + … + cm = n.
Output
For each case, output the answer modulo 786433.
Sample Input
2
4 4
1 1
1 2
1 3
1 4
4 2
3 1 2 3
1 4
Sample Output
1
3
Hint
For the second case, the three permutations is: {2, 3, 1, 4}, {3, 2, 1, 4}, {3, 1, 2, 4}.
题解:
一个联通块的点必须是连续的
构造一个dp方程,令dp[i] 表示 i 个连续的点,能形成联通块的 方案数
那么 : dp[i] = n! - i*dp[n - i] 这里 i 取遍1~n-1
发现 i * dp[n-i], 就是卷积,取的模又是 费马素数, 那就NTT求解了
还要用cdq分治优化下
#include<bits/stdc++.h>
using namespace std;
#pragma comment(linker, "/STACK:102400000,102400000")
#define ls i<<1
#define rs ls | 1
#define mid ((ll+rr)>>1)
#define pii pair<int,int>
#define MP make_pair
typedef long long LL;
const long long INF = 1e18+1LL;
const double pi = acos(-1.0);
const int N = 1e6+, M = 1e3+,inf = 2e9,mod = ; const LL G = , P = ; LL mul(LL x,LL y){
return (x*y-(LL)(x/(long double)P*y+1e-)*P+P)%P;
}
LL qpow(LL x,LL k,LL p){
LL ret=;
while(k){
if(k&) ret=mul(ret,x);
k>>=;
x=mul(x,x);
}
return ret;
}
LL wn[];
void getwn(){
for(int i=; i<=; ++i){
int t=<<i;
wn[i]=qpow(G,(P-)/t,P);
}
}int len;
void NTT_init() {
getwn();
} void NTT(LL y[],int op){
for(int i=,j=len>>,k; i<len-; ++i){
if(i<j) swap(y[i],y[j]);
k=len>>;
while(j>=k){
j-=k;
k>>=;
}
if(j<k) j+=k;
}
int id=;
for(int h=; h<=len; h<<=) {
++id;
for(int i=; i<len; i+=h){
LL w=;
for(int j=i; j<i+(h>>); ++j){
LL u=y[j],t=mul(y[j+h/],w);
y[j]=u+t;
if(y[j]>=P) y[j]-=P;
y[j+h/]=u-t+P;
if(y[j+h/]>=P) y[j+h/]-=P;
w=mul(w,wn[id]);
}
}
}
if(op==-){
for(int i=; i<len/; ++i) swap(y[i],y[len-i]);
LL inv=qpow(len,P-,P);
for(int i=; i<len; ++i) y[i]=mul(y[i],inv);
}
} int T,n,m;
LL y[N],yy[N],dp[N],f[N];
void cdq(int ll,int rr) {
if(ll == rr) return ;
cdq(ll,mid);
len = ;
while(len <= rr-ll+) len<<=;
for(int i = ; i < mid-ll+; ++i) y[i] = dp[ll+i];
for(int i = mid-ll+; i < len; ++i) y[i] = ;
for(int i = ; i < len; ++i) yy[i] = f[i+];
NTT(y,),NTT(yy,);
for(int i = ; i < len; ++i) y[i] = (y[i] * yy[i])%P;
NTT(y,-);
for(int i = mid; i < rr; ++i)
dp[i+] = ((dp[i+] - y[i - ll])%mod + mod) % mod;
cdq(mid+,rr);
}
int main() {
NTT_init();
f[] = ;
for(int i = ; i <= ; ++i) {
f[i] = 1LL* f[i-] * i % mod;
dp[i] = f[i];
}
cdq(,);
scanf("%d",&T);
while(T--) {
scanf("%d%d",&n,&m);
int ans = ;
for(int i = ; i <= m; ++i) {
int x,y,mi = inf,mx = ;
scanf("%d",&x);
ans = (ans * dp[x]) % mod;
for(int j = ; j <= x; ++j) {
scanf("%d",&y);
mx = max(mx,y);
mi = min(mi,y);
}
if(mx - mi + != x) ans = ;
}
printf("%d\n",ans);
}
return ;
}
ZOJ 3874 Permutation Graph 分治NTT的更多相关文章
- ZOJ 3874 Permutation Graph (分治NTT优化DP)
题面:vjudge传送门 ZOJ传送门 题目大意:给你一个排列,如果两个数构成了逆序对,就在他们之间连一条无向边,这样很多数会构成一个联通块.现在给出联通块内点的编号,求所有可能的排列数 推来推去容易 ...
- ZOJ 3874 Permutation Graph ——分治 NTT
发现每一块一定是按照一定的顺序的. 然后与标号无关,并且相同大小的对答案的影响相同. 然后列出递推式,上NTT+分治就可以了. 然后就可以与输入同阶处理答案了. #include <map> ...
- ZOJ3874 Permutation Graph 【分治NTT】
题目链接 ZOJ3874 题意简述: 在一个序列中,两点间如果有边,当且仅当两点为逆序对 给定一个序列的联通情况,求方案数对\(786433\)取模 题解 自己弄了一个晚上终于弄出来了 首先\(yy\ ...
- ZOJ3874 Permutation Graph
Time Limit: 2 Seconds Memory Limit: 65536 KB Edward has a permutation {a1, a2, … an}. He finds ...
- [gdoi2018 day1]小学生图论题【分治NTT】
正题 题目大意 一张随机的\(n\)个点的竞赛图,给出它的\(m\)条相互无交简单路径,求这张竞赛图的期望强联通分量个数. \(1\leq n,m\leq 10^5\) 解题思路 先考虑\(m=0\) ...
- #565. 「LibreOJ Round #10」mathematican 的二进制(期望 + 分治NTT)
题面 戳这里,题意简单易懂. 题解 首先我们发现,操作是可以不考虑顺序的,因为每次操作会加一个 \(1\) ,每次进位会减少一个 \(1\) ,我们就可以考虑最后 \(1\) 的个数(也就是最后的和) ...
- LOJ2541 PKUWC2018猎人杀(概率期望+容斥原理+生成函数+分治NTT)
考虑容斥,枚举一个子集S在1号猎人之后死.显然这个概率是w1/(Σwi+w1) (i∈S).于是我们统计出各种子集和的系数即可,造出一堆形如(-xwi+1)的生成函数,分治NTT卷起来就可以了. #i ...
- 【BZOJ-3456】城市规划 CDQ分治 + NTT
题目链接 http://www.lydsy.com/JudgeOnline/problem.php?id=3456 Solution 这个问题可以考虑dp,利用补集思想 N个点的简单图总数量为$2^{ ...
- CF960G Bandit Blues 【第一类斯特林数 + 分治NTT】
题目链接 CF960G 题解 同FJOI2016只不过数据范围变大了 考虑如何预处理第一类斯特林数 性质 \[x^{\overline{n}} = \sum\limits_{i = 0}^{n}\be ...
随机推荐
- nginx中access_log和nginx.conf中的log_format用法
nginx服务器日志相关指令主要有两条: 一条是log_format,用来设置日志格式; 另外一条是access_log,用来指定日志文件的存放路径.格式和缓存大小 可以参加ngx_http_log_ ...
- Title共通写法
用: <LinearLayout android:layout_width="match_parent" android:layout_height="wrap_c ...
- bzoj 4401 块的计数 思想+模拟+贪心
块的计数 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 455 Solved: 261[Submit][Status][Discuss] Descr ...
- bzoj3211 花神游历各国 线段树,势能分析
[bzoj3211]花神游历各国 2014年3月17日2,7230 Description Input Output 每次x=1时,每行一个整数,表示这次旅行的开心度 Sample Input ...
- uva 11426 线性欧拉函数筛选+递推
Problem J GCD Extreme (II) Input: Standard Input Output: Standard Output Given the value of N, you w ...
- python 之递归及冒泡排序
一.递归函数 在函数内部,可以调用其他函数,如果一个函数在内部调用本身,这个函数就是递归函数 1.递归的基本原理: 每一次函数调用都会有一次返回.当程序流执行到某一级递归的结尾处时,它会转移到前一级递 ...
- jquery的固定定位效果
今天做了个固定定位的效果.比如对导航需要进行固定定位效果: 当没有滚动到导航下面,导航正常显示. 当滚动到导航下面,导航就固定到顶部. 这个效果使用了jquery的方法实现,具体思路为: 1)首先获取 ...
- Codeforces 518 D Ilya and Escalator
Discription Ilya got tired of sports programming, left university and got a job in the subway. He wa ...
- IOS -- base64编码
在iOS7以后可以用NSData自带的base64EncodedStringWithOptions进行编解码: 方法如下: - (NSString *)encodeToBase64String:(UI ...
- ASP.NET Core 如何记录每次响应的Response信息 - sky 胡萝卜星星 - CSDN博客
原文:ASP.NET Core 如何记录每次响应的Response信息 - sky 胡萝卜星星 - CSDN博客 上一篇文章中我们已经成功的记录了Request部分的信息,现在我们来看下如何记录Res ...