洛谷P3698 [CQOI2017]小Q的棋盘
考虑一个贪心,先在根节点周围转一圈,然后再往下走最长链肯定是最优的
然后设最长链的长度为$d$,如果$m\leq d$,那么答案为$m+1$
否则的话还剩下$m-d+1$步,又得保证能走回来,所以答案为$min\{n,d+\frac{m-d+1}{2}\}$
//minamoto
#include<iostream>
#include<cstdio>
using namespace std;
#define getc() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++)
char buf[<<],*p1=buf,*p2=buf;
template<class T>inline bool cmax(T&a,const T&b){return a<b?a=b,:;}
int read(){
#define num ch-'0'
char ch;bool flag=;int res;
while(!isdigit(ch=getc()))
(ch=='-')&&(flag=true);
for(res=num;isdigit(ch=getc());res=res*+num);
(flag)&&(res=-res);
#undef num
return res;
}
const int N=;
int head[N],Next[N<<],ver[N<<],tot;
inline void add(int u,int v){
ver[++tot]=v,Next[tot]=head[u],head[u]=tot;
}
int dep[N],n,m,res,d;
void dfs(int u,int fa){
dep[u]=dep[fa]+;
for(int i=head[u];i;i=Next[i]){
int v=ver[i];
if(v!=fa) dfs(v,u);
}
}
int main(){
// freopen("testdata.in","r",stdin);
n=read(),m=read()+;
for(int i=,u,v;i<n;++i)
u=read()+,v=read()+,add(u,v),add(v,u);
dfs(,);
for(int i=;i<=n;++i) cmax(d,dep[i]);
if(m<=d) return printf("%d\n",m),;
printf("%d\n",min(n,d+(m-d+)/));
return ;
}
洛谷P3698 [CQOI2017]小Q的棋盘的更多相关文章
- 洛谷 P3698 [CQOI2017]小Q的棋盘 解题报告
P3698 [CQOI2017]小Q的棋盘 题目描述 小 Q 正在设计一种棋类游戏. 在小 Q 设计的游戏中,棋子可以放在棋盘上的格点中.某些格点之间有连线,棋子只能在有连线的格点之间移动.整个棋盘上 ...
- BZOJ4813或洛谷3698 [CQOI2017]小Q的棋盘
BZOJ原题链接 洛谷原题链接 贪心或树形\(DP\)都可做,但显然\(DP\)式子不好推(因为我太菜了),所以我选择贪心. 很显然从根出发主干走最长链是最优的,而剩下的点每个都需要走两步,所以用除去 ...
- [bzoj4815] [洛谷P3700] [Cqoi2017] 小Q的表格
Description 小Q是个程序员. 作为一个年轻的程序员,小Q总是被老C欺负,老C经常把一些麻烦的任务交给小Q来处理. 每当小Q不知道如何解决时,就只好向你求助.为了完成任务,小Q需要列一个表格 ...
- 洛谷 P3700 - [CQOI2017]小Q的表格(找性质+数论)
洛谷题面传送门 又是一道需要一些观察的数论 hot tea-- 注意到题目中 \(b·f(a,a+b)=(a+b)·f(a,b)\) 这个柿子长得有点像求解 \(\gcd\) 的辗转相除法,因此考虑从 ...
- P3698 [CQOI2017]小Q的棋盘
题目链接 题意分析 首先 我们肯定会贪心的走从根节点到叶子结点最长的一条链 首先没有过剩的就好办了 但是有的话 我们就一边往下走 一边走分支 分支上每一个点平均走过两次 所以我们把剩下的除以\(2\) ...
- bzoj 4813: [Cqoi2017]小Q的棋盘 [树形背包dp]
4813: [Cqoi2017]小Q的棋盘 题意: 某poj弱化版?树形背包 据说还可以贪心... #include <iostream> #include <cstdio> ...
- BZOJ_4813_[Cqoi2017]小Q的棋盘_dfs
BZOJ_4813_[Cqoi2017]小Q的棋盘_dfs Description 小Q正在设计一种棋类游戏.在小Q设计的游戏中,棋子可以放在棋盘上的格点中.某些格点之间有连线,棋子只能 在有连线的格 ...
- 洛咕 P3700 [CQOI2017]小Q的表格
洛咕 P3700 [CQOI2017]小Q的表格 神仙题orz 首先推一下给的两个式子中的第二个 \(b\cdot F(a,a+b)=(a+b)\cdot F(a,b)\) 先简单的想,\(F(a,a ...
- [BZOJ4813][CQOI2017]小Q的棋盘(DP,贪心)
4813: [Cqoi2017]小Q的棋盘 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 804 Solved: 441[Submit][Statu ...
随机推荐
- poj1845 数论 快速幂
Sumdiv Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 16466 Accepted: 4101 Descripti ...
- 2018/3/4 Activiti教程之对于流程的基本操作以及从发起到完成还有相关注意事项(与Springboot整合版)三
写教程实在太累了,,,还浪费时间,Activiti教程就写到这好了,不过最近在玩区块链,到时候写几个区块链方面的教程. 这是一些流程的查询与删除api,删除这块,默认是级联删除(加个false参数,就 ...
- Codeforces704C. Black Widow
n<=1e5个值v,分别由<=1e5的m个变量中的1<=ki<=2个布尔变量xj(或某个变量取反)或起来组成,而所有的v异或起来为1,一个x不会在输入数据中出现超过2次,包括他 ...
- 3.2 符号表之二叉查找树BST
一.插入和查找 1.二叉查找树(Binary Search Tree)是一棵二叉树,并且每个结点都含有一个Comparable的键,保证每个结点的键都大于其左子树中任意结点的键而小于其右子树的任意结点 ...
- redis可视化界面的操作【二十一】
1.安装 2.linux服务器中开启linux服务 root@qiaozhi:~# cd /usr/local/redis root@qiaozhi:/usr/local/redis# ./bin/ ...
- mvn解决jar包冲突
转自:http://blog.csdn.net/guanglihuan/article/details/50512855 对于Jar包冲突问题,我们开发人员经常都会有碰到,当我们使用一些jar包中的类 ...
- JDBC的结果集
以下内容引用自http://wiki.jikexueyuan.com/project/jdbc/result-sets.html: SQL语句从数据库查询中获取数据,并将数据返回到结果集中.SELEC ...
- Mybatis中的ognl表达式。及myabtis where标签/if test标签/trim标签
1.mybatis默认支持使用ognl表达式来生成动态sql语句 MyBatis中可以使用OGNL的地方有两处: 动态SQL表达式中 ${param}参数中 上面这两处地方在MyBatis中处理的时候 ...
- IOS程序崩溃报告管理解决方案(Crashlytics 在2014-09-24)
预研Crashlytics 在2014-09-241:实现原理在原理上,Crashlytics通过以下2步完成崩溃日志的上传和分析:(1)提供应用SDK,你需要在应用启动时调用其SDK来设置你的应用 ...
- python 区块链程序
python 区块链程序 学习了:https://mp.weixin.qq.com/s?__biz=MzAxODcyNjEzNQ==&mid=2247484921&idx=1& ...