POJ 2452 Sticks Problem (暴力或者rmq+二分)
题意:给你一组数a[n],求满足a[i] < a[k] < a[j] (i <= k <= j)的最大的 j - i 。
析:在比赛时,我是暴力做的,虽然错了好多次,后来说理解是rmq,我又用rmq写了一次,发现rmq还没有我暴力快,rwq 2000多,暴力才700.
暴力中加了一个优化条件就是前枚举 i 时,下一个 i 值不一定是i+1,而是满足条件中的最大值的位置。这样优化就是时间很短了。
如果用rmq,就得用两个dp数组分别记录最大值和最小值的下标,然后枚举 i,在i+1 - n-1这个区间中求第一个小于 a[i] 的数,然后再从 i+1 - 该数,
求最大的那个数的下标。不断更新答案即可。
代码如下:
暴力的代码:
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cmath>
#include <iostream>
#include <cstring>
#include <set>
#include <queue>
#include <algorithm>
#include <vector>
#include <map>
#include <cctype>
#include <cmath>
#include <stack>
#define debug puts("+++++")
//#include <tr1/unordered_map>
#define freopenr freopen("in.txt", "r", stdin)
#define freopenw freopen("out.txt", "w", stdout)
using namespace std;
//using namespace std :: tr1; typedef long long LL;
typedef pair<int, int> P;
const int INF = 0x3f3f3f3f;
const double inf = 0x3f3f3f3f3f3f;
const LL LNF = 0x3f3f3f3f3f3f;
const double PI = acos(-1.0);
const double eps = 1e-8;
const int maxn = 5e4 + 5;
const LL mod = 1e9 + 7;
const int N = 1e6 + 5;
const int dr[] = {-1, 0, 1, 0, 1, 1, -1, -1};
const int dc[] = {0, 1, 0, -1, 1, -1, 1, -1};
const char *Hex[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
inline LL gcd(LL a, LL b){ return b == 0 ? a : gcd(b, a%b); }
inline int gcd(int a, int b){ return b == 0 ? a : gcd(b, a%b); }
inline int lcm(int a, int b){ return a * b / gcd(a, b); }
int n, m;
const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
inline int Min(int a, int b){ return a < b ? a : b; }
inline int Max(int a, int b){ return a > b ? a : b; }
inline LL Min(LL a, LL b){ return a < b ? a : b; }
inline LL Max(LL a, LL b){ return a > b ? a : b; }
inline bool is_in(int r, int c){
return r >= 0 && r < n && c >= 0 && c < m;
}
int a[maxn]; int main(){
while(scanf("%d", &n) == 1){
for(int i = 0; i < n; ++i) scanf("%d", a+i);
int ans = 0;
int x;
for(int i = 0; i < n-ans; i = x+1){
x = Min(x, a[i]);
int mmax = a[i];
x = i;
for(int j = i+1; j < n; ++j){
if(mmax < a[j]){
x = j;
mmax = a[j];
}
if(a[j] < a[i]) break;
if(mmax <= a[j]){ ans = Max(ans, j-i); }
}
}
printf("%d\n", ans ? ans : -1);
}
return 0;
}
rmq的代码:
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cmath>
#include <iostream>
#include <cstring>
#include <set>
#include <queue>
#include <algorithm>
#include <vector>
#include <map>
#include <cctype>
#include <cmath>
#include <stack>
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
//#include <tr1/unordered_map>
#define freopenr freopen("in.txt", "r", stdin)
#define freopenw freopen("out.txt", "w", stdout)
using namespace std;
//using namespace std :: tr1; typedef long long LL;
typedef pair<int, int> P;
const int INF = 0x3f3f3f3f;
const double inf = 0x3f3f3f3f3f3f;
const LL LNF = 0x3f3f3f3f3f3f;
const double PI = acos(-1.0);
const double eps = 1e-8;
const int maxn = 5e4 + 5;
const LL mod = 10000000000007;
const int N = 1e6 + 5;
const int dr[] = {-1, 0, 1, 0, 1, 1, -1, -1};
const int dc[] = {0, 1, 0, -1, 1, -1, 1, -1};
const char *Hex[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
inline LL gcd(LL a, LL b){ return b == 0 ? a : gcd(b, a%b); }
int n, m;
const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
inline int Min(int a, int b){ return a < b ? a : b; }
inline int Max(int a, int b){ return a > b ? a : b; }
inline LL Min(LL a, LL b){ return a < b ? a : b; }
inline LL Max(LL a, LL b){ return a > b ? a : b; }
inline bool is_in(int r, int c){
return r >= 0 && r < n && c >= 0 && c < m; }
int dp1[maxn][20], dp2[maxn][20];
int a[maxn];
inline int Min_(int i, int j){ return a[i] < a[j] ? i : j; }
inline int Max_(int i, int j){ return a[i] < a[j] ? j : i; } void rmq_init(){
for(int i = 0; i < n; ++i) dp1[i][0] = dp2[i][0] = i;
for(int j = 1; (1<<j) <= n; ++j)
for(int i = 0; i + (1<<j) - 1 < n; ++i){
dp1[i][j] = Min_(dp1[i][j-1], dp1[i+(1<<(j-1))][j-1]);
dp2[i][j] = Max_(dp2[i][j-1], dp2[i+(1<<(j-1))][j-1]);
}
} inline int rmqmin(int l, int r){
int k = (int)(log(r-l+1.0) / log(2.0));
return Min_(dp1[l][k], dp1[r-(1<<k)+1][k]);
} inline int rmqmax(int l, int r){
int k = (int)(log(r-l+1.0) / log(2.0));
return Max_(dp2[l][k], dp2[r-(1<<k)+1][k]);
} int solve(int i){
int l = i+1, r = n-1;
while(l < r){
int mid = (l+r) >> 1;
if(a[rmqmin(l, mid)] > a[i]) l = mid + 1;
else r = mid;
}
return rmqmax(i, l);
} int main(){
while(scanf("%d", &n) == 1){
for(int i = 0; i < n; ++i) scanf("%d", a+i);
rmq_init();
int ans = 0;
for(int i = 0; i < n - ans - 1; ++i){
int j = solve(i);
ans = Max(ans, j-i);
}
printf("%d\n", ans ? ans : -1);
}
return 0;
}
POJ 2452 Sticks Problem (暴力或者rmq+二分)的更多相关文章
- POJ 2452 Sticks Problem
RMQ+二分....枚举 i ,找比 i 小的第一个元素,再找之间的第一个最大元素..... Sticks Problem Time Limit: 6000MS ...
- POJ_2452 Sticks Problem 【ST表 + 二分】
一.题目 Sticks Problem 二.分析 对于$i$和$j$,并没有很好的方法能同时将他们两找到最优值,所以考虑固定左端点$i$. 固定左端点后,根据题意,$a[i]$是最小值,那么现在的问题 ...
- *HDU3486 RMQ+二分
Interviewe Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total ...
- 搜索 + 剪枝 --- POJ 1101 : Sticks
Sticks Problem's Link: http://poj.org/problem?id=1011 Mean: http://poj.org/problem?id=1011&lan ...
- Sticks Problem
Sticks Problem poj-2452 题目大意:给你一串n个数的数列a,上面的数为a1到an.我们求最大的y-x,其中,y和x满足1.x<y 2.任意的x<i<y,都有ai ...
- hdu 5289 Assignment(2015多校第一场第2题)RMQ+二分(或者multiset模拟过程)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5289 题意:给你n个数和k,求有多少的区间使得区间内部任意两个数的差值小于k,输出符合要求的区间个数 ...
- hdu 3486 Interviewe (RMQ+二分)
Interviewe Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total ...
- POJ 2723 Get Luffy Out(2-SAT+二分答案)
Get Luffy Out Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 8851 Accepted: 3441 Des ...
- HDU 5089 Assignment(rmq+二分 或 单调队列)
Assignment Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) Total ...
随机推荐
- unity 菜单栏添加新菜单
using UnityEngine; using System.Collections; using UnityEditor; public class jqmTools : CreateSphere ...
- Maven 引入外部包
当需要从外部引入一个包(譬如说读写Excel 的POI jar 包 ), 不需要手动地去官网下载一个包然后粘贴到相应的地方. 只需要把Java 工程 转为 Maven 工程 ( 在工程上右键 > ...
- MySQL数据库:SQL语句基础、库操作、表操作、数据类型、约束条件、表之间的关系
数据库相关概念: 1. 数据库服务器:运行数据库管理软件的计算机 2. 数据库管理软件:MySQL.Oracle.db2.slqserver 3. 库:文件夹,用来组织文件/表 4. 表:文件(类似于 ...
- 基于端口的信息探测-portscan-1.0
http://www.tiaozhanziwo.com/archives/174.html
- Visual C++ 网络编程 笔记
第一章 网络分层模型 OSI模型应用层:服务于应用程序的协议,比如用于域名解析的DNS协议,用于下载界面内容的HTTP协议表示层:处理不同硬件和操作系统之间的差异,确保应用层之间顺利通信 and 加密 ...
- PostgreSQL及PostGIS使用
基础知识 参考文档:http://www.postgis.net/docs/ PostGIS支持的GIS对象是OpenGIS Consortium(OGC)定义的“简单特征”的超集.OpenGIS规范 ...
- Redis集群方案之Twemproxy+HAProxy+Keepalived+Sentinel+主从复制(待实践)
首先说明一下,Twemproxy+HAProxy+Keepalived+Sentinel+主从复制-这里提到的技术不一定全部都用上,但是全部用上之后可以达到高可用. 主从复制:实现数据一式多份的保障. ...
- jquery校验框架
http://www.validform.club/ http://craftpip.github.io/jquery-confirm/
- weblogic自带的jdk是在工程的包部署后编译使用
weblogic自带的jdk是在工程的包部署后编译使用的.当用户把项目打包部署到weblogic上面,运行该项目的java环境jdk就是用的weblogic自带的jdk了,工程中的jdk和编译时的jd ...
- zabbix学习系列之配置邮件告警
整体思路是:添加监控项-->配置触发器(达到设定的阈值就触发)-->配置动作(将某个触发器绑定到某个动作,达到某个阈值,触发器触发的时候,通过邮件发送告警信息给某个用户) 配置触发器 创建 ...