PCB 机器学习(ML.NET)初体验实现PCB加投率预测
使用ML.NET建立PCB加投率模型对单一蚀刻工序进行加投率预测, 此实例为最简单预测,要想实现全流程加投率预测挑战难度还是挺大的,可以查看另一种关于大数据在PCB行业应用---加投率计算基本原理:PCB 加投率计算实现基本原理--K最近邻算法(KNN)
建立数据结构,蚀刻工序影响报废的的关键参数,铜厚、线宽公差、最小线宽、最小线距(实际影响参数会更多)
/// <summary>
/// PCB加投模型样本数据结构(此为演示结构并非真实加投模型结构)--蚀刻工序
/// 大数据量样本数越多预测结果数据越准确(选用的大数据数据分类算法)
/// </summary>
public class PCB_Scrap_Data
{
/// <summary>
/// PCB铜厚
/// </summary>
[Column("")]
public float CuThickness;
/// <summary>
/// 蚀刻线宽公差
/// </summary>
[Column("")]
public float Tolerance;
/// <summary>
/// 最小线宽
/// </summary>
[Column("")]
public float Width;
/// <summary>
/// 最小线距
/// </summary>
[Column("")]
public float Space;
/// <summary>
/// 加投率数值
/// </summary>
[Column("")]
[ColumnName("Label")]
public float Label;
}
/// <summary>
/// 此为预测PCB加投率结果类
/// </summary>
public class ScrapPrediction
{
/// <summary>
/// 预测加投率值
/// </summary>
[ColumnName("PredictedLabel")]
public float PredictedLabels;
}
准备PCB蚀刻工序历史实际报废率数据与对应的影响蚀刻报废的参数因子(测试数据只用了12条,数据量是远远不够的,仅仅用于测试用,要实际要预测的话于少准备1年以前的生产数据,数据量的多少决定预测的准确率高低),此数据是参数对此蚀刻工序的影响报废权重值,并非真实的值, 为了简化:报废多少量就是因该要加投多少量。
如下数据:每行数据带表信息: 【表面铜厚】,【铜厚】,【最小线宽】,【最小线距】,【报废率】
,,,,0.03
,,,,0.03
,,,,0.03
,,,,0.03
,,,,0.02
,,,,0.02
,,,,0.02
,,,,0.02
,,,,0.01
,,,,0.01
,,,,0.01
,,,,0.01
//创建管道并加载数据
var pipeline = new LearningPipeline();
string dataPath = ".\\Data\\pcb.data";
pipeline.Add(new TextLoader<PCB_Scrap_Data>(dataPath, separator: ","));
//转换数据
pipeline.Add(new Dictionarizer("Label"));
//将所有功能放入矢量
pipeline.Add(new ColumnConcatenator("Features", "CuThickness", "Tolerance", "Width", "Space"));
//添加学习算法(SDCA算法--即:随机双坐标上升)
pipeline.Add(new StochasticDualCoordinateAscentClassifier());
//将标签转Label换回原始文本
pipeline.Add(new PredictedLabelColumnOriginalValueConverter() { PredictedLabelColumn = "PredictedLabel" });
//根据数据集--训练模型
var model = pipeline.Train<PCB_Scrap_Data, ScrapPrediction>();
//训练模型好的PCB加投率模型保存起来
model.WriteAsync("PCB_Scrap_Model.zip");
// 用PCB加投率(参数因子)套入训练好模型来预测PCB加投率-----测试调用
var prediction = model.Predict(new PCB_Scrap_Data()
{
CuThickness = ,
Tolerance = ,
Width = ,
Space = ,
});
Console.WriteLine($"PCB加投率预测值为: {prediction.PredictedLabels}");
将PCB加投率模型封装WebAPI接口,供外部调用
// POST api/ScrapPrediction
/// <summary>
/// PCB加投率预测---通过训练好模型来预测PCB加投率
/// </summary>
/// <param name="value"></param>
/// <returns></returns>
[HttpPost]
public async Task<double> Post([FromBody] PCB_Scrap_Data value)
{
var model = await PredictionModel.ReadAsync<PCB_Scrap_Data, ScrapPrediction>("PCB_Scrap_Model.zip");
var prediction = model.Predict(value);
return prediction.PredictedLabels;
}
PCB 机器学习(ML.NET)初体验实现PCB加投率预测的更多相关文章
- PCB 加投率计算实现基本原理--K最近邻算法(KNN)
PCB行业中,客户订购5000pcs,在投料时不会直接投5000pcs,因为实际在生产过程不可避免的造成PCB报废, 所以在生产前需计划多投一定比例的板板, 例:订单 量是5000pcs,加投3%,那 ...
- Python大数据与机器学习之NumPy初体验
本文是Python大数据与机器学习系列文章中的第6篇,将介绍学习Python大数据与机器学习所必须的NumPy库. 通过本文系列文章您将能够学到的知识如下: 应用Python进行大数据与机器学习 应用 ...
- 香蕉派(or 皮?)上手初体验 -- 外观鉴赏,安装,配置&总结
一.前言及简单介绍 watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvbG9uZ2Vyem9uZQ==/font/5a6L5L2T/fontsize/400/f ...
- python--爬虫入门(七)urllib库初体验以及中文编码问题的探讨
python系列均基于python3.4环境 ---------@_@? --------------------------------------------------------------- ...
- SignalR初体验
简介 ASP .NET SignalR[1] 是一个ASP .NET 下的类库,可以在ASP .NET 的Web项目中实现实时通信.什么是实时通信的Web呢?就是让客户端(Web页面)和服务器端可以 ...
- 文档数据库RavenDB-介绍与初体验
文档数据库RavenDB-介绍与初体验 阅读目录 1.RavenDB概述与特性 2.RavenDB安装 3.C#开发初体验 4.RavenDB资源 不知不觉,“.NET平台开源项目速览“系列文章已经1 ...
- (数据科学学习手札35)tensorflow初体验
一.简介 TensorFlow时谷歌于2015年11月宣布在Github上开源的第二代分布式机器学习系统,目前仍处于快速开发迭代中,有大量的新功能新特性在陆续研发中: TensorFlow既是一个实现 ...
- Kaggle初体验之泰坦尼特生存预测
Kaggle初体验之泰坦尼特生存预测 学习完了决策树的ID3.C4.5.CART算法,找一个试手的地方,Kaggle的练习赛泰坦尼特很不错,记录下 流程 首先注册一个账号,然后在顶部菜单栏Co ...
- CNN Mini-Fashion数据集以及Pytorch初体验
下载Fasion-MNIST数据集 Fashion-MNIST是一个替代原始的MNIST手写数字数据集的另一个图像数据集. 它是由Zalando(一家德国的时尚科技公司)旗下的研究部门提供.其涵盖了来 ...
随机推荐
- 集训第六周 数学概念与方法 数论 线性方程 I题
Description The Sky is Sprite. The Birds is Fly in the Sky. The Wind is Wonderful. Blew Throw the Tr ...
- 集训第四周(高效算法设计)D题 (区间覆盖问题)
原题 UVA10020 :http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=19688 经典的贪心问题,区间上贪心当然是右区间越 ...
- SQlServer中的MD5加密
SELECT sys.fn_varbintohexstr(HASHBYTES('MD5', '我'));
- jmap Unable to open socket file解决
pid:Unable to open socket file: target process not responding or HotSport VM not loadedThe -F option ...
- java项目连接access数据库
1.导入Access_JDBC30.jar到项目中 jar包百度云链接:https://pan.baidu.com/s/10HFM3HomMArvfHjklA_1MA 密码:0qxp 项目名称-> ...
- [codeforces471D]MUH and Cube Walls
[codeforces471D]MUH and Cube Walls 试题描述 Polar bears Menshykov and Uslada from the zoo of St. Petersb ...
- ci框架(codeigniter)Email发送邮件、收件人、附件、Email调试工具
ci框架(codeigniter)Email发送邮件.收件人.附件.Email调试工具 Email 类 CodeIgniter 拥有强大的 Email 类来提供如下的功能: 多 ...
- 图解Elasticsearch中的_source、_all、store和index属性
https://blog.csdn.net/napoay/article/details/62233031
- Java电商项目-5.内容管理cms系统
目录 实现加载内容分类树功能 实现内容分类动态添加 删除内容分类节点 实现内容分类节点的分页显示 实现广告内容的添加 实现广告内容删除 实现广告内容编辑 到Github获取源码请点击此处 实现加载内容 ...
- P1665 正方形计数
P1665 正方形计数 题目描述 给定平面上N个点,你需要计算以其中4个点为顶点的正方形的个数.注意这里的正方形边不一定需要和坐标轴平行. 输入输出格式 输入格式: 第一行一个数X,以下N个点的坐标. ...