PCB 机器学习(ML.NET)初体验实现PCB加投率预测
使用ML.NET建立PCB加投率模型对单一蚀刻工序进行加投率预测, 此实例为最简单预测,要想实现全流程加投率预测挑战难度还是挺大的,可以查看另一种关于大数据在PCB行业应用---加投率计算基本原理:PCB 加投率计算实现基本原理--K最近邻算法(KNN)
建立数据结构,蚀刻工序影响报废的的关键参数,铜厚、线宽公差、最小线宽、最小线距(实际影响参数会更多)
/// <summary>
/// PCB加投模型样本数据结构(此为演示结构并非真实加投模型结构)--蚀刻工序
/// 大数据量样本数越多预测结果数据越准确(选用的大数据数据分类算法)
/// </summary>
public class PCB_Scrap_Data
{
/// <summary>
/// PCB铜厚
/// </summary>
[Column("")]
public float CuThickness;
/// <summary>
/// 蚀刻线宽公差
/// </summary>
[Column("")]
public float Tolerance;
/// <summary>
/// 最小线宽
/// </summary>
[Column("")]
public float Width;
/// <summary>
/// 最小线距
/// </summary>
[Column("")]
public float Space;
/// <summary>
/// 加投率数值
/// </summary>
[Column("")]
[ColumnName("Label")]
public float Label;
}
/// <summary>
/// 此为预测PCB加投率结果类
/// </summary>
public class ScrapPrediction
{
/// <summary>
/// 预测加投率值
/// </summary>
[ColumnName("PredictedLabel")]
public float PredictedLabels;
}
准备PCB蚀刻工序历史实际报废率数据与对应的影响蚀刻报废的参数因子(测试数据只用了12条,数据量是远远不够的,仅仅用于测试用,要实际要预测的话于少准备1年以前的生产数据,数据量的多少决定预测的准确率高低),此数据是参数对此蚀刻工序的影响报废权重值,并非真实的值, 为了简化:报废多少量就是因该要加投多少量。
如下数据:每行数据带表信息: 【表面铜厚】,【铜厚】,【最小线宽】,【最小线距】,【报废率】
,,,,0.03
,,,,0.03
,,,,0.03
,,,,0.03
,,,,0.02
,,,,0.02
,,,,0.02
,,,,0.02
,,,,0.01
,,,,0.01
,,,,0.01
,,,,0.01
//创建管道并加载数据
var pipeline = new LearningPipeline();
string dataPath = ".\\Data\\pcb.data";
pipeline.Add(new TextLoader<PCB_Scrap_Data>(dataPath, separator: ","));
//转换数据
pipeline.Add(new Dictionarizer("Label"));
//将所有功能放入矢量
pipeline.Add(new ColumnConcatenator("Features", "CuThickness", "Tolerance", "Width", "Space"));
//添加学习算法(SDCA算法--即:随机双坐标上升)
pipeline.Add(new StochasticDualCoordinateAscentClassifier());
//将标签转Label换回原始文本
pipeline.Add(new PredictedLabelColumnOriginalValueConverter() { PredictedLabelColumn = "PredictedLabel" });
//根据数据集--训练模型
var model = pipeline.Train<PCB_Scrap_Data, ScrapPrediction>();
//训练模型好的PCB加投率模型保存起来
model.WriteAsync("PCB_Scrap_Model.zip");
// 用PCB加投率(参数因子)套入训练好模型来预测PCB加投率-----测试调用
var prediction = model.Predict(new PCB_Scrap_Data()
{
CuThickness = ,
Tolerance = ,
Width = ,
Space = ,
});
Console.WriteLine($"PCB加投率预测值为: {prediction.PredictedLabels}");
将PCB加投率模型封装WebAPI接口,供外部调用
// POST api/ScrapPrediction
/// <summary>
/// PCB加投率预测---通过训练好模型来预测PCB加投率
/// </summary>
/// <param name="value"></param>
/// <returns></returns>
[HttpPost]
public async Task<double> Post([FromBody] PCB_Scrap_Data value)
{
var model = await PredictionModel.ReadAsync<PCB_Scrap_Data, ScrapPrediction>("PCB_Scrap_Model.zip");
var prediction = model.Predict(value);
return prediction.PredictedLabels;
}
PCB 机器学习(ML.NET)初体验实现PCB加投率预测的更多相关文章
- PCB 加投率计算实现基本原理--K最近邻算法(KNN)
PCB行业中,客户订购5000pcs,在投料时不会直接投5000pcs,因为实际在生产过程不可避免的造成PCB报废, 所以在生产前需计划多投一定比例的板板, 例:订单 量是5000pcs,加投3%,那 ...
- Python大数据与机器学习之NumPy初体验
本文是Python大数据与机器学习系列文章中的第6篇,将介绍学习Python大数据与机器学习所必须的NumPy库. 通过本文系列文章您将能够学到的知识如下: 应用Python进行大数据与机器学习 应用 ...
- 香蕉派(or 皮?)上手初体验 -- 外观鉴赏,安装,配置&总结
一.前言及简单介绍 watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvbG9uZ2Vyem9uZQ==/font/5a6L5L2T/fontsize/400/f ...
- python--爬虫入门(七)urllib库初体验以及中文编码问题的探讨
python系列均基于python3.4环境 ---------@_@? --------------------------------------------------------------- ...
- SignalR初体验
简介 ASP .NET SignalR[1] 是一个ASP .NET 下的类库,可以在ASP .NET 的Web项目中实现实时通信.什么是实时通信的Web呢?就是让客户端(Web页面)和服务器端可以 ...
- 文档数据库RavenDB-介绍与初体验
文档数据库RavenDB-介绍与初体验 阅读目录 1.RavenDB概述与特性 2.RavenDB安装 3.C#开发初体验 4.RavenDB资源 不知不觉,“.NET平台开源项目速览“系列文章已经1 ...
- (数据科学学习手札35)tensorflow初体验
一.简介 TensorFlow时谷歌于2015年11月宣布在Github上开源的第二代分布式机器学习系统,目前仍处于快速开发迭代中,有大量的新功能新特性在陆续研发中: TensorFlow既是一个实现 ...
- Kaggle初体验之泰坦尼特生存预测
Kaggle初体验之泰坦尼特生存预测 学习完了决策树的ID3.C4.5.CART算法,找一个试手的地方,Kaggle的练习赛泰坦尼特很不错,记录下 流程 首先注册一个账号,然后在顶部菜单栏Co ...
- CNN Mini-Fashion数据集以及Pytorch初体验
下载Fasion-MNIST数据集 Fashion-MNIST是一个替代原始的MNIST手写数字数据集的另一个图像数据集. 它是由Zalando(一家德国的时尚科技公司)旗下的研究部门提供.其涵盖了来 ...
随机推荐
- python网络编程01
1.什么是C/S架构? 客户端/服务器架构.实现服务端软件与客户端软件基于网络的通信. 2.互联网协议是什么?分别介绍五层协议中每一层的功能? 互联网协议是指用于互联网通信的规范.分为:osi七层.t ...
- hibernate-validator验证请求参数
开发接口要进行请求参数内容格式校验,比如在接收到请求参数后依次需要进行数据内容判空.数据格式规范校验等,十分麻烦,于是尝试用hibernate-validator进行参数校验,简单记录一下使用步骤: ...
- [luoguP1410] 子序列(DP)
传送门 发现一个结论. 只要存在长度>=3的非严格下降子序列就是NO,反之就是YES #include <cstdio> #include <iostream> #def ...
- Linux下汇编语言学习笔记32 ---
这是17年暑假学习Linux汇编语言的笔记记录,参考书目为清华大学出版社 Jeff Duntemann著 梁晓辉译<汇编语言基于Linux环境>的书,喜欢看原版书的同学可以看<Ass ...
- codeforces Gym 100735 D、E、G、H、I
http://codeforces.com/gym/100735 D题 直接暴力枚举 感觉这道题数据有点问题 为什么要先排下序才能过?不懂.. #include <stdio.h> #in ...
- [bzoj3991][SDOI2015]寻宝游戏_树链的并_倍增lca_平衡树set
寻宝游戏 bzoj-3991 SDOI-2015 题目大意:题目链接. 注释:略. 想法:我们发现如果给定了一些点有宝物的话那么答案就是树链的并. 树链的并的求法就是把所有点按照$dfs$序排序然后相 ...
- Android GIS开发系列-- 入门季(7) 利用GeometryEngine坐标转换、计算距离与面积等
GeometryEngine是Arcgis的重要工具类,利用此工具类,可以计算地图上的距离.面积,将点.线.面转化为Json数据,将Json转化为点线面,坐标转换作用非常强大. 一.坐标转化 将用到方 ...
- 当遇到Mac的Excel或者Word老是重复崩溃的时候
打开Number,新建文件然后导出为Excel.之后再用Excel打开,一切都OK了.
- 一句话创建Jupyter For TensorFlow
docker run -v /home/jupyter_files:/home/jovyan/work -it -d --rm -p 10082:8888 jupyter/tensorflow-not ...
- canvas 插件
http://www.jq22.com/yanshi2217 参考这个站 发现一些比较有用的canvas插件: 线形图插件:jquery.sparkline 2.1.1 excanvas 环形图,饼状 ...