• Hive是通过把sql转换成对应mapreduce程序,然后提交到Hadoop上执行,查看具体的执行计划可以通过执行explain sql知晓
  • 一条sql会被转化成由多个阶段组成的步骤,每个步骤有执行顺序和依赖关系,可以称之为有向无环图(DAG:Directed Acyclic Graph)
  • 这些步骤可能包含:元数据的操作,文件系统的操作,map/reduce计算等
  • 语法格式:
EXPLAIN [EXTENDED|DEPENDENCY|AUTHORIZATION|LOCKS|VECTORIZATION] query
  • explain输出内容包括:

    • 抽象语法树
    • 执行计划不同阶段的依赖关系
    • 各个阶段的描述
  • extended输出更加详细的信息
  • denpendency输出依赖的数据源
  • authorization输出执行sql授权信息
  • locks 输出锁情况
  • vectorization相关
    • Adds detail to the EXPLAIN output showing why Map and Reduce work is not vectorized.
    • Syntax: EXPLAIN VECTORIZATION [ONLY] [SUMMARY|OPERATOR|EXPRESSION|DETAIL]
    • ONLY option suppresses most non-vectorization elements.
    • SUMMARY (default) shows vectorization information for the PLAN (is vectorization enabled) and a summary of Map and Reduce work.
    • OPERATOR shows vectorization information for operators. E.g. Filter Vectorization. Includes all information of SUMMARY.
    • EXPRESSION shows vectorization information for expressions. E.g. predicateExpression. Includes all information of SUMMARY and OPERATOR.
    • DETAIL shows detail-level vectorization information. It includes all information of SUMMARY, OPERATOR, and EXPRESSION.
  • 带上FORMATTED 关键子,可以json格式输出
  • sort order: +表示升序 -表示降序
  • 大概了解一下相关的执行情况
# explain默认
0: jdbc:hive2://> explain select * from sort_test sort by id desc limit 10;
+--------------------------------------------------------------------------------------------------+--+
| Explain |
+--------------------------------------------------------------------------------------------------+--+
| STAGE DEPENDENCIES: |
| Stage-1 is a root stage |
| Stage-2 depends on stages: Stage-1 |
| Stage-0 depends on stages: Stage-2 |
| |
| STAGE PLANS: |
| Stage: Stage-1 |
| Map Reduce |
| Map Operator Tree: |
| TableScan |
| alias: sort_test |
| Statistics: Num rows: 8 Data size: 890 Basic stats: COMPLETE Column stats: NONE |
| Select Operator |
| expressions: id (type: int), name (type: string) |
| outputColumnNames: _col0, _col1 |
| Statistics: Num rows: 8 Data size: 890 Basic stats: COMPLETE Column stats: NONE |
| Reduce Output Operator |
| key expressions: _col0 (type: int) |
| sort order: - |
| Statistics: Num rows: 8 Data size: 890 Basic stats: COMPLETE Column stats: NONE |
| value expressions: _col1 (type: string) |
| Reduce Operator Tree: |
| Select Operator |
| expressions: KEY.reducesinkkey0 (type: int), VALUE._col0 (type: string) |
| outputColumnNames: _col0, _col1 |
| Statistics: Num rows: 8 Data size: 890 Basic stats: COMPLETE Column stats: NONE |
| Limit |
| Number of rows: 10 |
| Statistics: Num rows: 8 Data size: 890 Basic stats: COMPLETE Column stats: NONE |
| File Output Operator |
| compressed: false |
| table: |
| input format: org.apache.hadoop.mapred.SequenceFileInputFormat |
| output format: org.apache.hadoop.hive.ql.io.HiveSequenceFileOutputFormat |
| serde: org.apache.hadoop.hive.serde2.lazybinary.LazyBinarySerDe |
| |
| Stage: Stage-2 |
| Map Reduce |
| Map Operator Tree: |
| TableScan |
| Reduce Output Operator |
| key expressions: _col0 (type: int) |
| sort order: - |
| Statistics: Num rows: 8 Data size: 890 Basic stats: COMPLETE Column stats: NONE |
| value expressions: _col1 (type: string) |
| Reduce Operator Tree: |
| Select Operator |
| expressions: KEY.reducesinkkey0 (type: int), VALUE._col0 (type: string) |
| outputColumnNames: _col0, _col1 |
| Statistics: Num rows: 8 Data size: 890 Basic stats: COMPLETE Column stats: NONE |
| Limit |
| Number of rows: 10 |
| Statistics: Num rows: 8 Data size: 890 Basic stats: COMPLETE Column stats: NONE |
| File Output Operator |
| compressed: false |
| Statistics: Num rows: 8 Data size: 890 Basic stats: COMPLETE Column stats: NONE |
| table: |
| input format: org.apache.hadoop.mapred.TextInputFormat |
| output format: org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat |
| serde: org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe |
| |
| Stage: Stage-0 |
| Fetch Operator |
| limit: 10 |
| Processor Tree: |
| ListSink |
| |
+--------------------------------------------------------------------------------------------------+--+ # authorization
0: jdbc:hive2://> explain formatted authorization select * from sort_test sort by id desc limit 10;
+-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+--+
| Explain |
+-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+--+
| {"CURRENT_USER":"root","OPERATION":"SWITCHDATABASE","INPUTS":["badou@sort_test"],"OUTPUTS":["hdfs://master:9000/tmp/hive/root/fac1e10c-babb-4927-886e-411b3e9190fb/hive_2018-10-18_11-04-47_534_1155924552647075339-1/-mr-10000"]} |
+-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+--+

参考资料

【0】Hive wiki - LanguageManual Explain

【1】hive入门学习:explain执行计划的理解

Hive之执行计划分析(explain)的更多相关文章

  1. MySQL学习系列2--MySQL执行计划分析EXPLAIN

    原文:MySQL学习系列2--MySQL执行计划分析EXPLAIN 1.Explain语法 EXPLAIN SELECT …… 变体:   EXPLAIN EXTENDED SELECT …… 将执行 ...

  2. MySQL学习系列2--MySQL执行计划分析EXPLAIN [原创]

    1.Explain语法 EXPLAIN SELECT …… 变体:   EXPLAIN EXTENDED SELECT …… 将执行计划“反编译”成SELECT语句,运行SHOW WARNINGS 可 ...

  3. 分析oracle的执行计划(explain plan)并对对sql进行优化实践

    基于oracle的应用系统很多性能问题,是由应用系统sql性能低劣引起的,所以,sql的性能优化很重要,分析与优化sql的性能我们一般通过查看该sql的执行计划,本文就如何看懂执行计划,以及如何通过分 ...

  4. Hive SQL执行流程分析

    转自 http://www.tuicool.com/articles/qyUzQj 最近在研究Impala,还是先回顾下Hive的SQL执行流程吧. Hive有三种用户接口: cli (Command ...

  5. MongoDB执行计划分析详解

    要保证数据库处于高效.稳定的状态,除了良好的硬件基础.高效高可用的数据库架构.贴合业务的数据模型之外,高效的查询语句也是不可少的.那么,如何查看并判断我们的执行计划呢?我们今天就来谈论下MongoDB ...

  6. SQL执行计划分析

    explain执行计划中的字段以及含义在下面的博客中有详细讲述: https://blog.csdn.net/da_guo_li/article/details/79008016 执行计划能告诉我们什 ...

  7. 转:Oracle 执行计划(Explain Plan) 说明

    Oracle 执行计划(Explain Plan) 说明 原贴地址:http://blog.csdn.net/tianlesoftware/article/details/5827245   如果要分 ...

  8. mysql,存储引擎,事务,锁,慢查询,执行计划分析,sql优化

    基础篇:MySql架构与存储引擎 逻辑架构图: 连接层: mysql启动后(可以把mysql类比为一个后台的服务器),等待客户端请求,当请求到来后,mysql建立一个一个线程处理(线程池则分配一个空线 ...

  9. MongoDB干货系列2-MongoDB执行计划分析详解(2)(转载)

    写在之前的话 作为近年最为火热的文档型数据库,MongoDB受到了越来越多人的关注,但是由于国内的MongoDB相关技术分享屈指可数,不少朋友向我抱怨无从下手. <MongoDB干货系列> ...

随机推荐

  1. R Programming week1-Data Type

    Objects R has five basic or “atomic” classes of objects: character numeric (real numbers) integer co ...

  2. YOLOv3模型识别车位图片的测试报告(节选)

    1,YOLOv3模型简介 YOLO能实现图像或视频中物体的快速识别.在相同的识别类别范围和识别准确率条件下,YOLO识别速度最快. 官网:https://pjreddie.com/darknet/yo ...

  3. js几个逻辑运算符的形象概括

    “&&”是逻辑与操作符,只有“&&”两边值同时满足(同时为真),整个表达式值才为真. b>a && b<c    //“&& ...

  4. sql 语句的优化

    sql语句的优化:在大多数情况下,为了更快的遍历表结构,优化器主要是根据定义的索引来提高性能.但是在不合理的SQL语句中,优化器会删去索引进而使用全表扫描, 一般而言,这种sql被称为劣质sql,所以 ...

  5. wifi钓鱼之--Pumpkin

    无线钓鱼   前言:请准备一块rt3070的外接网卡 Pumpkin是一款无线安全检测工具WiFi-Pumpkin的使用,利用该工具可以伪造接入点完成中间人攻击,同时也支持一些其它的无线渗透功能.旨在 ...

  6. CAD参数绘制圆弧(com接口)

    在CAD设计时,需要绘制圆弧,用户可以在图面点圆弧起点,圆弧上的一点和圆弧的终点,这样就绘制出圆弧. 主要用到函数说明: _DMxDrawX::DrawArc2 由圆弧上的三点绘制一个圆弧.详细说明如 ...

  7. python __future__ 使用

    在开头加上from __future__ import print_function这句之后,即使在python2.X,使用print就得像python3.X那样加括号使用.python2.X中pri ...

  8. 第2节 mapreduce深入学习:9、手机上行流量排序

    还是上次那个例子,需求二:上行流量倒序排序(递减排序) 分析,以需求一的输出数据作为排序的输入数据,自定义FlowBean,以FlowBean为map输出的key,以手机号作为Map输出的value, ...

  9. 笔试算法题(44):简介 - 动态规划(Dynamic Programming)

    议题:动态规划(Dynamic Programming) 分析: DP主要用于解决包含重叠子问题(Overlapping Subproblems)的最优化问题,其基本策略是将原问题分解为相似的子问题, ...

  10. mysql负载均衡

    一.docker安装haproxy:docker pull haproxy 二.配置haproxy(参考url:https://zhangge.net/5125.html),vim /usr/loca ...