Apache Jena TDB CRUD operations

June 11, 2015 by maltesander

http://tutorial-academy.com/apache-jena-tdb-crud-operations/

In this tutorial we explain Apache Jena TDB CRUD operations with simple examples. The CRUD operations are implemented with the Jena programming API instead of SPARQL. We provide deeper understanding of the internal operations of the TDB triple store and show some tips and tricks to avoid common programming errors.

1. What are Apache Jena TDB and CRUD operations?

Apache Jena is an open source Java framework for Semantic Web and Linked Data applications. It offers RDF and SPARQL support an Ontology API and Reasoning support as well as triple stores (TDB and Fuseki).

CRUD operations is an abbrevation for create, read, updat and delete and represents the most basic database operations. The same operations are available for triple stores and are shown in this tutorial for TDB.

2. Install Apache Jena and TDB

You can download and add the required libraries manually and add them to your Java Build Path. I recommend to download the full Apache Jena framework to use the Jena API later on. You can download it here.

If you use Maven add the following to your dependencies:

<dependency>
<groupId>org.apache.jena</groupId>
<artifactId>apache-jena-libs</artifactId>
<type>pom</type>
<version>2.13.0</version>
</dependency>

目前最新版本 3.2.0

We use the latest stable release which is 2.13.0 at the moment. Do not forget to update your Maven project afterwards.

3. Writing Java class for TDB access

We create a class called TDBConnection. In the constructor we already initialize the TDB triple store with a path pointing to a folder to be stored. We need a Dataset which is a collection of named graphs or an unamed default graph.

public class TDBConnection
{
private Dataset ds; public TDBConnection( String path )
{
ds = TDBFactory.createDataset( path );
}
}

If you have an ontology you want to store and manipulate you can use the following function to load it into the store. The begin and end functions mark transaction, which we strongly recommend to use throughout your application. It speeds up read operations and protects the data against data corruption, process termination or system crashes. You basically store multiple named models (namend graphs) in the dataset. You can store one default graph (no name).

public void loadModel( String modelName, String path )
{
Model model = null; ds.begin( ReadWrite.WRITE );
try
{
model = ds.getNamedModel( modelName );
FileManager.get().readModel( model, path );
ds.commit();
}
finally
{
ds.end();
}
}

If we do not want to load an ontology or model we can build it from scratch using an add method.

public void addStatement( String modelName, String subject, String property, String object )
{
Model model = null; ds.begin( ReadWrite.WRITE );
try
{
model = ds.getNamedModel( modelName ); Statement stmt = model.createStatement
(
model.createResource( subject ),
model.createProperty( property ),
model.createResource( object )
); model.add( stmt );
ds.commit();
}
finally
{
if( model != null ) model.close();
ds.end();
}
}

Moving on with reading stored triples. We store the results in a List of Statements.

public List<Statement> getStatements( String modelName, String subject, String property, String object )
{
List<Statement> results = new ArrayList<Statement>(); Model model = null; ds.begin( ReadWrite.READ );
try
{
model = ds.getNamedModel( modelName ); Selector selector = new SimpleSelector(
( subject != null ) ? model.createResource( subject ) : (Resource) null,
( property != null ) ? model.createProperty( property ) : (Property) null,
( object != null ) ? model.createResource( object ) : (RDFNode) null
); StmtIterator it = model.listStatements( selector );
{
while( it.hasNext() )
{
Statement stmt = it.next();
results.add( stmt );
}
} ds.commit();
}
finally
{
if( model != null ) model.close();
ds.end();
} return results;
}

For removing triples we use the following function.

public void removeStatement( String modelName, String subject, String property, String object )
{
Model model = null; ds.begin( ReadWrite.WRITE );
try
{
model = ds.getNamedModel( modelName ); Statement stmt = model.createStatement
(
model.createResource( subject ),
model.createProperty( property ),
model.createResource( object )
); model.remove( stmt );
ds.commit();
}
finally
{
if( model != null ) model.close();
ds.end();
}
}

The update method can be realized by removing and adding the new triple.

Finally we want to close the triple store if we finished our transactions

public void close()
{
ds.close();
}

Now we can move on to write a small test application.

4. Write a test application for the TDB Connection

If you are familiar with JUnit tests in Java, you can use the following code. We add some triples to two named graphs (named models), check the size of the result and remove some triples.

public class TDBConnectionTest extends TestCase
{
protected TDBConnection tdb = null; protected String URI = "http://tutorial-academy.com/2015/tdb#"; protected String namedModel1 = "Model_German_Cars";
protected String namedModel2 = "Model_US_Cars"; protected String john = URI + "John";
protected String mike = URI + "Mike";
protected String bill = URI + "Bill";
protected String owns = URI + "owns"; protected void setUp()
{
tdb = new TDBConnection("tdb");
} public void testAll()
{
// named Model 1
tdb.addStatement( namedModel1, john, owns, URI + "Porsche" );
tdb.addStatement( namedModel1, john, owns, URI + "BMW" );
tdb.addStatement( namedModel1, mike, owns, URI + "BMW" );
tdb.addStatement( namedModel1, bill, owns, URI + "Audi" );
tdb.addStatement( namedModel1, bill, owns, URI + "BMW" ); // named Model 2
tdb.addStatement( namedModel2, john, owns, URI + "Chrysler" );
tdb.addStatement( namedModel2, john, owns, URI + "Ford" );
tdb.addStatement( namedModel2, bill, owns, URI + "Chevrolet" ); // null = wildcard search. Matches everything with BMW as object!
List<Statement> result = tdb.getStatements( namedModel1, null, null, URI + "BMW");
System.out.println( namedModel1 + " size: " + result.size() + "\n\t" + result );
assertTrue( result.size() > 0); // null = wildcard search. Matches everything with john as subject!
result = tdb.getStatements( namedModel2, john, null, null);
System.out.println( namedModel2 + " size: " + result.size() + "\n\t" + result );
assertTrue( result.size() == 2 ); // remove all statements from namedModel1
tdb.removeStatement( namedModel1, john, owns, URI + "Porsche" );
tdb.removeStatement( namedModel1, john, owns, URI + "BMW" );
tdb.removeStatement( namedModel1, mike, owns, URI + "BMW" );
tdb.removeStatement( namedModel1, bill, owns, URI + "Audi" );
tdb.removeStatement( namedModel1, bill, owns, URI + "BMW" ); result = tdb.getStatements( namedModel1, john, null, null);
assertTrue( result.size() == 0); tdb.close();
}
}

If you do not want to use JUnit you can simply add the code to a main function.

public class TDBMain
{
public static void main(String[] args)
{
TDBConnection tdb = null; String URI = "http://tutorial-academy.com/2015/tdb#"; String namedModel1 = "Model_German_Cars";
String namedModel2 = "Model_US_Cars"; String john = URI + "John";
String mike = URI + "Mike";
String bill = URI + "Bill";
String owns = URI + "owns"; tdb = new TDBConnection("tdb");
// named Model 1
tdb.addStatement( namedModel1, john, owns, URI + "Porsche" );
tdb.addStatement( namedModel1, john, owns, URI + "BMW" );
tdb.addStatement( namedModel1, mike, owns, URI + "BMW" );
tdb.addStatement( namedModel1, bill, owns, URI + "Audi" );
tdb.addStatement( namedModel1, bill, owns, URI + "BMW" ); // named Model 2
tdb.addStatement( namedModel2, john, owns, URI + "Chrysler" );
tdb.addStatement( namedModel2, john, owns, URI + "Ford" );
tdb.addStatement( namedModel2, bill, owns, URI + "Chevrolet" ); // null = wildcard search. Matches everything with BMW as object!
List<Statement> result = tdb.getStatements( namedModel1, null, null, URI + "BMW");
System.out.println( namedModel1 + " size: " + result.size() + "\n\t" + result ); // null = wildcard search. Matches everything with john as subject!
result = tdb.getStatements( namedModel2, john, null, null);
System.out.println( namedModel2 + " size: " + result.size() + "\n\t" + result ); // remove all statements from namedModel1
tdb.removeStatement( namedModel1, john, owns, URI + "Porsche" );
tdb.removeStatement( namedModel1, john, owns, URI + "BMW" );
tdb.removeStatement( namedModel1, mike, owns, URI + "BMW" );
tdb.removeStatement( namedModel1, bill, owns, URI + "Audi" );
tdb.removeStatement( namedModel1, bill, owns, URI + "BMW" ); result = tdb.getStatements( namedModel1, john, null, null);
System.out.println( namedModel1 + " size: " + result.size() + "\n\t" + result );
tdb.close(); } }

5. Tips for developing with Jena and TDB

In your TDB storage folder you will find a file called nodes.dat, after initializing the TDB store. There you can check if your triples were inserted. Of course it gets complicated in a bigger graph, but it is kept mostly in plain text. Make use of the search function.

   <Model_5FGerman_5FCars>   +<http://tutorial-academy.com/2015/tdb#John>   +<http://tutorial-academy.com/2015/tdb#owns>   .<http://tutorial-academy.com/2015/tdb#Porsche>   *<http://tutorial-academy.com/2015/tdb#BMW>   +<http://tutorial-academy.com/2015/tdb#Mike>   +<http://tutorial-academy.com/2015/tdb#Bill>   +<http://tutorial-academy.com/2015/tdb#Audi>   <Model_5FUS_5FCars>   /<http://tutorial-academy.com/2015/tdb#Chrysler>   +<http://tutorial-academy.com/2015/tdb#Ford>   0<http://tutorial-academy.com/2015/tdb#Chevrolet>

If you delete triples and wonder why they are still kept in the nodes.dat, but do not show up when reading via the API, this is related to the TDB architecture.

6. TDB architecture

TDB uses a node table which maps RDF nodes to 64 bit integer Ids and the other way around. The 64 bit integer Ids are used to create indexes. The indexes allow database scans which are required to process SPARQL queries.

Now if new data is added, the TDB store adds entries to the node table and the indexes. Removing data only affects the indexes. Therefore the node table will grow continuously even if data is removed.

You might think that is a terrible way to store data, but there are good reasons to do so:

  1. The integer Ids contain file offsets. In order to accelerate inserts, the node table is a squential file. The Id to node lookup is a fast file scan. If data gets deleted from the node table, you have to recalculate and rewrite all file offsets.
  2. Now if data is deleted, we do not know how often a node is used without scanning the complete database. Consequently we do not know which node table entry should be deleted. A workaround would add complexity and slow down and delete operations.

Anyways, in our experience the majority of operations on a triple store are inserts and reads. If you ever have the trouble of running out of disk space, you may read the whole affected graph and store it from scratch while deleting the original one. Of course depending on the size, this may as well slow down the triple store.

【转载】Apache Jena TDB CRUD operations的更多相关文章

  1. Jena TDB 102

    1 Introduction TDB is a RDF storage of Jena. official guarantees and limitations TDB support full ra ...

  2. Jena TDB Assembler

    TDB Assembler Assemblers (装配器) 是Jena中用于描述将要构建的对象(通常是模型和数据集 models & datasets)的一种通用机制.例如, Fuseki ...

  3. Apache jena SPARQL endpoint及推理

    一.Apache Jena简介 Apache Jena(后文简称Jena),是一个开源的Java语义网框架(open source Semantic Web Framework for Java),用 ...

  4. 导入本体到Jena TDB数据库

    本体的存储方法或称本体持久化,大致分为基于内存的方式.基于文件的方式.基于数据库的方式和专门的管理工具方式4种(傅柱等, 2013).其中,基于数据库的方式又有基于关系数据库.基于面向对象数据库.基于 ...

  5. Outline of Apache Jena Notes

    1 description 这篇是语义网应用框架Apache Jena学习记录的索引. 初始动机见Apache Jena - A Bootstrap 2 Content 内容组织基本上遵循Jena首页 ...

  6. Jena TDB 101 Java API without Assembler

    Update on 2015/05/12 ongoing tutorials site on https://github.com/zhoujiagen/semanticWebTutorialUsin ...

  7. MyBatis Tutorial – CRUD Operations and Mapping Relationships – Part 1---- reference

    http://www.javacodegeeks.com/2012/11/mybatis-tutorial-crud-operations-and-mapping-relationships-part ...

  8. Apache Jena - A Bootstrap

    前言 这篇文档属探究立项性质,作为语义网和本体建模工作的延续. 依照NoSQL Distilled上的考察方法,将Apache Jena作为图数据库的泛型考察.   内容 多种出版物上声明主要有四类N ...

  9. Jena TDB assembler syntax

    1 introduction Assembler is a DSL of Jena to specify something to build, models and dataset, for exa ...

随机推荐

  1. python 如何将md5转为16字节

    python的hashlib库中提供的hexdigest返回长度32的字符串. md5sum是128bit,也就是16字节,如何将python生成字符串的转为16字节呢? 请看下面代码 import ...

  2. JZ2440 裸机驱动 第14章 ADC和触摸屏接口

    本章目标:     了解S3C2410/S3C2440和触摸屏的结构:     了解电阻触摸屏的工作原理和等效电路图:     了解S3C2410/S3C2440触摸屏控制器的多种工作模式:     ...

  3. bisect维持已排序的序列

    如下: import bisect # 用来处理已排序的序列,用来维持已排序的序列,升序 # 基于二分查找 li = [] bisect.insort(li, 2) bisect.insort(li, ...

  4. React-Native 在android写不支持gif的解决方案!

    只需要在android/app/build.gradle中的dependencies字段中添加: compile 'com.facebook.fresco:animated-gif:0.13.0' 然 ...

  5. ASP.NET Web Pages:Razor

    ylbtech-.Net-ASP.NET Web Pages:Razor 1.返回顶部 1. ASP.NET Web Pages - 添加 Razor 代码 在本教程中,我们将使用 C# 和 Visu ...

  6. java ssl https 连接详解 生成证书 tomcat keystone

    java ssl https 连接详解 生成证书 我们先来了解一下什么理HTTPS 1. HTTPS概念 1)简介 HTTPS(全称:Hypertext Transfer Protocol over ...

  7. 牛逼的lsof命令!!!

    linux lsof命令详解 简介 lsof(list open files)是一个列出当前系统打开文件的工具.在linux环境下,任何事物都以文件的形式存在,通过文件不仅仅可以访问常规数据,还可以访 ...

  8. 设置UMG的ComboBox(String)字体大小

    转自:http://aigo.iteye.com/blog/2295448 UMG自带ComboBox组件没有提供直接的属性来修改其字体大小,只能自己做一个列表类型的widget然后再塞进ComboB ...

  9. Python中的logger和handler到底是个什么鬼

    最近的任务经常涉及到日志的记录,特意去又学了一遍logging的记录方法.跟java一样,python的日志记录也是比较繁琐的一件事,在写一条记录之前,要写好多东西.典型的日志记录的步骤是这样的: 创 ...

  10. 如何折叠IntelliJ IDEA代码片段

      在 IntelliJ IDEA 中您可以折叠(fold)代码片段,将它们缩小到单个可见行.这样,您可以隐藏当前看起来无关紧要的细节.如果必要的话,折叠的代码片段可以被展开(unfolded). 折 ...