Given a 2D binary matrix filled with 0's and 1's, find the largest square containing only 1's and return its area.

Example:

Input: 

1 0 1 0 0
1 0 1 1 1
1 1 1 1 1
1 0 0 1 0 Output: 4 思路是DP, 3种做法, 通用的T: O(m*n) , S: O(m*n) 和只针对部分情况可以use 滚动数组来reduce space成为O(n).
A[i][j] = min(A[i-1][j-1], left[i][j-1], up[i-1][j]) + 1 为边长 i, j > 0 滚动数组
A[i][j] = min(A[i-1][j-1], A[i][j-1], A[i-1][j]) + 1 为边长  i, j > 0
A[i][j] = min(A[i%2-1][j-1], A[i%2][j-1], A[i%2-1][j]) + 1 为边长  i, j > 0

1. Constraints
1) size >=[0*0]
2) element will be "1" or "0" # note it will be integer or string 2. Ideas DP T: O(m*n) S: O(n) optimal
1) edge case, empty, m == 1 or n == 1
2) left, up , ans, init
3)
A[i][j] = min(A[i-1][j-1], left[i][j-1], up[i-1][j]) + 1
4) return res*res 3. codes 1) use left, up , and ans T: O(m*n) S: O(m*n)
 class Solution:
def maxSquare(self, matrix):
if not matrix: return 0
m, n = len(matrix), len(matrix[0])
left, up, ans, res = [[0]*n for _ in range(m)], [[0]*n for _ in range(m)], [[0]*n for _ in range(m)], 0
for i in range(m):
for j in range(n):
if matrix[i][j] == "":
res = 1 # edge case when m == 1 or n == 1
if j == 0:
left[i][j] = ans[i][j] = 1
if i == 0:
up[i][j] = ans[i][j] = 1
if i >0 and j > 0:
left[i][j] = left[i][j-1] + 1
up[i][j] = up[i-1][j] + 1
for i in range(1, m):
for j in range(1, n):
if matrix[i][j] == "":
ans[i][j] = min(ans[i-1][j-1], left[i][j-1], up[i-1][j])+1
res = max(res, ans[i][j])
return res*res

3.2) skip left and up, just use f array

T: O(m*n)    S: O(m*n)
class Solution:
def maxSquare(self, matrix):
if not matrix or not matrix[0]: return 0
m, n = len(matrix), len(matrix[0])
f, ans = [[0] * n for _ in range(m)], 0
# initial f
for i in range(m):
if matrix[i][0] == "":
f[i][0] = 1
ans = 1 # edge case when only edge is 1
for j in range(n):
if matrix[0][j] == "":
f[0][j] = 1
ans = 1
for i in range(1, m):
for j in range(1, n):
if matrix[i][j] == "":
f[i][j] = min(f[i - 1][j], f[i][j - 1], f[i - 1][j - 1]) + 1
ans = max(ans, f[i][j])
return ans * ans

3.2.1) 将初始化都放在f赋值的两个for loop中:

T: O(m*n)    S: O(m*n)
class Solution:
def maxSquare(self, matrix):
if not matrix or not matrix[0]: return 0
m, n = len(matrix), len(matrix[0])
f, ans = [[0] * n for _ in range(m)], 0
for i in range(m):
for j in range(n):
if matrix[i][j] == "":
if i == 0 or j == 0:
f[i][j] = 1
else:
f[i][j] = min(f[i - 1][j], f[i][j - 1], f[i - 1][j - 1]) + 1
ans = max(ans, f[i][j])
return ans * ans

3.3) 滚动数组,   T: O(m*n),    S: O(n)

class Solution:
def maxSquare(self, matrix):
if not matrix or not matrix[0]: return 0
m, n = len(matrix), len(matrix[0])
f, ans = [[0] * n for _ in range(2)], 0
for i in range(m):
for j in range(n):
if matrix[i][j] == "":
if i == 0 or j == 0:
f[i % 2][j] = 1
else:
f[i % 2][j] = min(f[(i - 1) % 2][j], f[i % 2][j - 1], f[(i - 1) % 2][j - 1]) + 1
ans = max(ans, f[i % 2][j])
else:
f[i % 2][j] = 0 #Note: must notice when using rolling array, need to initial
return ans * ans

4. Test cases

1) edge case

2)

1 0 1 0 0
1 0 1 1 1
1 1 1 1 1
1 0 0 1 0
 

[LeetCode] 221. Maximal Square _ Medium Tag: Dynamic Programming的更多相关文章

  1. [LeetCode] 63. Unique Paths II_ Medium tag: Dynamic Programming

    A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below). The ...

  2. [LeetCode] 139. Word Break_ Medium tag: Dynamic Programming

    Given a non-empty string s and a dictionary wordDict containing a list of non-empty words, determine ...

  3. [LeetCode] 45. Jump Game II_ Hard tag: Dynamic Programming

    Given an array of non-negative integers, you are initially positioned at the first index of the arra ...

  4. 求解最大正方形面积 — leetcode 221. Maximal Square

    本来也想像园友一样,写一篇总结告别 2015,或者说告别即将过去的羊年,但是过去一年发生的事情,实在是出乎平常人的想象,也不具有代表性,于是计划在今年 6 月份写一篇 "半年总结" ...

  5. [LeetCode] 55. Jump Game_ Medium tag: Dynamic Programming

    Given an array of non-negative integers, you are initially positioned at the first index of the arra ...

  6. [LeetCode] 62. Unique Paths_ Medium tag: Dynamic Programming

    A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below). The ...

  7. [LintCode] 77. Longest common subsequences_ Medium tag: Dynamic Programming

    Given two strings, find the longest common subsequence (LCS). Example Example 1: Input: "ABCD&q ...

  8. [LeetCode] 132. Palindrome Partitioning II_ Hard tag: Dynamic Programming

    Given a string s, partition s such that every substring of the partition is a palindrome. Return the ...

  9. (medium)LeetCode 221.Maximal Square

    Given a 2D binary matrix filled with 0's and 1's, find the largest square containing all 1's and ret ...

随机推荐

  1. JS插件---->SyntaxHighlighter的使用

    SyntaxHighlighter是一款用于web页面的代码着色工具,可以用来着色多种语言.今天我们通过实例来学习一下它的用法.旧同桌不是老情人,但与你分享过的青春不比初恋少半分. SyntaxHig ...

  2. 【Spring源码分析系列】启动component-scan类扫描加载过程

    原文地址:http://blog.csdn.net/xieyuooo/article/details/9089441/ 在spring 3.0以上大家都一般会配置一个Servelet,如下所示: &l ...

  3. 【大数据系列】MapReduce示例一年之内的最高气温

    一.项目采用maven构建,如下为pom.xml中引入的jar包 <project xmlns="http://maven.apache.org/POM/4.0.0" xml ...

  4. sencha touch 在安卓中横屏、竖屏切换 应用崩溃问题

    答案来至于 Sencha Touch 交流 @周旭 这是由于横竖屏转换导致activity重跑onCreate方法导致的,有两种解决方案:1.横竖屏转换的时候不要重新跑onCreate方法,这个可以在 ...

  5. C#中XML的读取

    本文主要介绍在C#中有关XML的读取,写入操作. 1.XML的内容如下: <?xml version="1.0" encoding="utf-8" ?&g ...

  6. 23种设计模式之策略模式(Strategy)

    策略模式是一种对象的行为型模式,定义一系列算法,并将每一个算法封装起来,并让它们可以相互替换.策略模式比算法独立于使用它的客户而变化,其目的是将行为和环境分隔,当出现新的行为时,只需要实现新的策略类. ...

  7. Unity3D笔记 英保通九 创建数

    Unity中创建树:可以直接通过程序自动来创建树木还可以手动创建树木(本质上在我看来就是给程序自动创建的树动动”小手术“) 一.程序自动创建树木 3.1.层次视图中创建:一个平行光.摄像机.地.数并且 ...

  8. vue--双向数据绑定

    <template> <div id="app"> <p>{{msg}}</p> <input v-model="m ...

  9. Java 制作证书(Windows 和Linux)

    一.Windows数字证书 1. 生成数字证书 1.1 进入[%JAVA_HOME%]路径下 cd D:\Program Files\Java\jdk1.8.0_131 1.2 生成证书.一些命令中红 ...

  10. DBCP连接池配置(DBCPUtils.java)

    配置文件 db_dbcp.properites driverClass=com.mysql.jdbc.Driver url=jdbc:mysql://127.0.0.1:3306/db?useSSL= ...