参考: http://eigen.tuxfamily.org/dox/AsciiQuickReference.txt

// A simple quickref for Eigen. Add anything that's missing.
// Main author: Keir Mierle #include <Eigen/Dense> Matrix<double, , > A; // Fixed rows and cols. Same as Matrix3d.
Matrix<double, , Dynamic> B; // Fixed rows, dynamic cols.
Matrix<double, Dynamic, Dynamic> C; // Full dynamic. Same as MatrixXd.
Matrix<double, , , RowMajor> E; // Row major; default is column-major.
Matrix3f P, Q, R; // 3x3 float matrix.
Vector3f x, y, z; // 3x1 float matrix.
RowVector3f a, b, c; // 1x3 float matrix.
VectorXd v; // Dynamic column vector of doubles
double s; // Basic usage
// Eigen // Matlab // comments
x.size() // length(x) // vector size
C.rows() // size(C,1) // number of rows
C.cols() // size(C,2) // number of columns
x(i) // x(i+1) // Matlab is 1-based
C(i,j) // C(i+1,j+1) // A.resize(, ); // Runtime error if assertions are on.
B.resize(, ); // Runtime error if assertions are on.
A.resize(, ); // Ok; size didn't change.
B.resize(, ); // Ok; only dynamic cols changed. A << , , , // Initialize A. The elements can also be
, , , // matrices, which are stacked along cols
, , ; // and then the rows are stacked.
B << A, A, A; // B is three horizontally stacked A's.
A.fill(); // Fill A with all 10's. // Eigen // Matlab
MatrixXd::Identity(rows,cols) // eye(rows,cols)
C.setIdentity(rows,cols) // C = eye(rows,cols)
MatrixXd::Zero(rows,cols) // zeros(rows,cols)
C.setZero(rows,cols) // C = zeros(rows,cols)
MatrixXd::Ones(rows,cols) // ones(rows,cols)
C.setOnes(rows,cols) // C = ones(rows,cols)
MatrixXd::Random(rows,cols) // rand(rows,cols)*2-1 // MatrixXd::Random returns uniform random numbers in (-1, 1).
C.setRandom(rows,cols) // C = rand(rows,cols)*2-1
VectorXd::LinSpaced(size,low,high) // linspace(low,high,size)'
v.setLinSpaced(size,low,high) // v = linspace(low,high,size)'
VectorXi::LinSpaced(((hi-low)/step)+, // low:step:hi
low,low+step*(size-)) // // Matrix slicing and blocks. All expressions listed here are read/write.
// Templated size versions are faster. Note that Matlab is 1-based (a size N
// vector is x(1)...x(N)).
// Eigen // Matlab
x.head(n) // x(1:n)
x.head<n>() // x(1:n)
x.tail(n) // x(end - n + 1: end)
x.tail<n>() // x(end - n + 1: end)
x.segment(i, n) // x(i+1 : i+n)
x.segment<n>(i) // x(i+1 : i+n)
P.block(i, j, rows, cols) // P(i+1 : i+rows, j+1 : j+cols)
P.block<rows, cols>(i, j) // P(i+1 : i+rows, j+1 : j+cols)
P.row(i) // P(i+1, :)
P.col(j) // P(:, j+1)
P.leftCols<cols>() // P(:, 1:cols)
P.leftCols(cols) // P(:, 1:cols)
P.middleCols<cols>(j) // P(:, j+1:j+cols)
P.middleCols(j, cols) // P(:, j+1:j+cols)
P.rightCols<cols>() // P(:, end-cols+1:end)
P.rightCols(cols) // P(:, end-cols+1:end)
P.topRows<rows>() // P(1:rows, :)
P.topRows(rows) // P(1:rows, :)
P.middleRows<rows>(i) // P(i+1:i+rows, :)
P.middleRows(i, rows) // P(i+1:i+rows, :)
P.bottomRows<rows>() // P(end-rows+1:end, :)
P.bottomRows(rows) // P(end-rows+1:end, :)
P.topLeftCorner(rows, cols) // P(1:rows, 1:cols)
P.topRightCorner(rows, cols) // P(1:rows, end-cols+1:end)
P.bottomLeftCorner(rows, cols) // P(end-rows+1:end, 1:cols)
P.bottomRightCorner(rows, cols) // P(end-rows+1:end, end-cols+1:end)
P.topLeftCorner<rows,cols>() // P(1:rows, 1:cols)
P.topRightCorner<rows,cols>() // P(1:rows, end-cols+1:end)
P.bottomLeftCorner<rows,cols>() // P(end-rows+1:end, 1:cols)
P.bottomRightCorner<rows,cols>() // P(end-rows+1:end, end-cols+1:end) // Of particular note is Eigen's swap function which is highly optimized.
// Eigen // Matlab
R.row(i) = P.col(j); // R(i, :) = P(:, j)
R.col(j1).swap(mat1.col(j2)); // R(:, [j1 j2]) = R(:, [j2, j1]) // Views, transpose, etc;
// Eigen // Matlab
R.adjoint() // R'
R.transpose() // R.' or conj(R') // Read-write
R.diagonal() // diag(R) // Read-write
x.asDiagonal() // diag(x)
R.transpose().colwise().reverse() // rot90(R) // Read-write
R.rowwise().reverse() // fliplr(R)
R.colwise().reverse() // flipud(R)
R.replicate(i,j) // repmat(P,i,j) // All the same as Matlab, but matlab doesn't have *= style operators.
// Matrix-vector. Matrix-matrix. Matrix-scalar.
y = M*x; R = P*Q; R = P*s;
a = b*M; R = P - Q; R = s*P;
a *= M; R = P + Q; R = P/s;
R *= Q; R = s*P;
R += Q; R *= s;
R -= Q; R /= s; // Vectorized operations on each element independently
// Eigen // Matlab
R = P.cwiseProduct(Q); // R = P .* Q
R = P.array() * s.array(); // R = P .* s
R = P.cwiseQuotient(Q); // R = P ./ Q
R = P.array() / Q.array(); // R = P ./ Q
R = P.array() + s.array(); // R = P + s
R = P.array() - s.array(); // R = P - s
R.array() += s; // R = R + s
R.array() -= s; // R = R - s
R.array() < Q.array(); // R < Q
R.array() <= Q.array(); // R <= Q
R.cwiseInverse(); // 1 ./ P
R.array().inverse(); // 1 ./ P
R.array().sin() // sin(P)
R.array().cos() // cos(P)
R.array().pow(s) // P .^ s
R.array().square() // P .^ 2
R.array().cube() // P .^ 3
R.cwiseSqrt() // sqrt(P)
R.array().sqrt() // sqrt(P)
R.array().exp() // exp(P)
R.array().log() // log(P)
R.cwiseMax(P) // max(R, P)
R.array().max(P.array()) // max(R, P)
R.cwiseMin(P) // min(R, P)
R.array().min(P.array()) // min(R, P)
R.cwiseAbs() // abs(P)
R.array().abs() // abs(P)
R.cwiseAbs2() // abs(P.^2)
R.array().abs2() // abs(P.^2)
(R.array() < s).select(P,Q ); // (R < s ? P : Q)
R = (Q.array()==).select(P,R) // R(Q==0) = P(Q==0)
R = P.unaryExpr(ptr_fun(func)) // R = arrayfun(func, P) // with: scalar func(const scalar &x); // Reductions.
int r, c;
// Eigen // Matlab
R.minCoeff() // min(R(:))
R.maxCoeff() // max(R(:))
s = R.minCoeff(&r, &c) // [s, i] = min(R(:)); [r, c] = ind2sub(size(R), i);
s = R.maxCoeff(&r, &c) // [s, i] = max(R(:)); [r, c] = ind2sub(size(R), i);
R.sum() // sum(R(:))
R.colwise().sum() // sum(R)
R.rowwise().sum() // sum(R, 2) or sum(R')'
R.prod() // prod(R(:))
R.colwise().prod() // prod(R)
R.rowwise().prod() // prod(R, 2) or prod(R')'
R.trace() // trace(R)
R.all() // all(R(:))
R.colwise().all() // all(R)
R.rowwise().all() // all(R, 2)
R.any() // any(R(:))
R.colwise().any() // any(R)
R.rowwise().any() // any(R, 2) // Dot products, norms, etc.
// Eigen // Matlab
x.norm() // norm(x). Note that norm(R) doesn't work in Eigen.
x.squaredNorm() // dot(x, x) Note the equivalence is not true for complex
x.dot(y) // dot(x, y)
x.cross(y) // cross(x, y) Requires #include <Eigen/Geometry> //// Type conversion
// Eigen // Matlab
A.cast<double>(); // double(A)
A.cast<float>(); // single(A)
A.cast<int>(); // int32(A)
A.real(); // real(A)
A.imag(); // imag(A)
// if the original type equals destination type, no work is done // Note that for most operations Eigen requires all operands to have the same type:
MatrixXf F = MatrixXf::Zero(,);
A += F; // illegal in Eigen. In Matlab A = A+F is allowed
A += F.cast<double>(); // F converted to double and then added (generally, conversion happens on-the-fly) // Eigen can map existing memory into Eigen matrices.
float array[];
Vector3f::Map(array).fill(); // create a temporary Map over array and sets entries to 10
int data[] = {, , , };
Matrix2i mat2x2(data); // copies data into mat2x2
Matrix2i::Map(data) = *mat2x2; // overwrite elements of data with 2*mat2x2
MatrixXi::Map(data, , ) += mat2x2; // adds mat2x2 to elements of data (alternative syntax if size is not know at compile time) // Solve Ax = b. Result stored in x. Matlab: x = A \ b.
x = A.ldlt().solve(b)); // A sym. p.s.d. #include <Eigen/Cholesky>
x = A.llt() .solve(b)); // A sym. p.d. #include <Eigen/Cholesky>
x = A.lu() .solve(b)); // Stable and fast. #include <Eigen/LU>
x = A.qr() .solve(b)); // No pivoting. #include <Eigen/QR>
x = A.svd() .solve(b)); // Stable, slowest. #include <Eigen/SVD>
// .ldlt() -> .matrixL() and .matrixD()
// .llt() -> .matrixL()
// .lu() -> .matrixL() and .matrixU()
// .qr() -> .matrixQ() and .matrixR()
// .svd() -> .matrixU(), .singularValues(), and .matrixV() // Eigenvalue problems
// Eigen // Matlab
A.eigenvalues(); // eig(A);
EigenSolver<Matrix3d> eig(A); // [vec val] = eig(A)
eig.eigenvalues(); // diag(val)
eig.eigenvectors(); // vec
// For self-adjoint matrices use SelfAdjointEigenSolver<>

eigen quick reference的更多相关文章

  1. C++ QUICK REFERENCE

    C++ string 用法详解 字符串分割(C++)  C++ QUICK REFERENCE Matt Mahoney, mmahoney@cs.fit.edu DECLARATIONS enum ...

  2. Quick Reference Card Urls For Web Developer

    C# C# Cheatsheet & Notes Coding Guidelines for C# 3.0, 4.0, 5.0 Core C# and .NET Quick Reference ...

  3. ASP.NET Web Pages (Razor) API Quick Reference

    ASP.NET Web Pages (Razor) API Quick Reference By Tom FitzMacken|February 10, 2014 Print This page co ...

  4. MongoDB - The mongo Shell, mongo Shell Quick Reference

    mongo Shell Command History You can retrieve previous commands issued in the mongo shell with the up ...

  5. The Pragmatic Programmer Quick Reference Guide

    1.关心你的技艺 Care About Your Craft 如果不在乎能否漂亮地开发出软件,你又为何要耗费生命去开发软件呢? 2.思考!你的工作 Think! About Your Work 关掉自 ...

  6. [译]AMQP 0-9-1 Quick Reference : basic

    Basic basic.ack(delivery-tag delivery-tag, bit multiple)Support: fullAcknowledge one or more message ...

  7. SQL Quick Reference From W3Schools

    SQL Statement Syntax AND / OR SELECT column_name(s)FROM table_nameWHERE conditionAND|OR condition AL ...

  8. objective-c Quick Reference

  9. GPDB 5.x PSQL Quick Reference

    General \copyright show PostgreSQL usage and distribution terms \g [FILE] or ; execute query (and se ...

随机推荐

  1. JavaScript 中的 Map

    很多编程语言中都有类似Map这种 键-值对 的数据结构. 可惜,JavaScript没有. 幸运的是,可以自己构建一个Map对象. 对象的定义 <script type="text/j ...

  2. css3整理--box-shadow

    box-shadow语法:(想法:用阴影来做边框,就不会出现动态改变边框宽度而产生的重排问题) 对象选择器{box-shadow:投影方式 X轴偏移量 Y轴偏移量 阴影模糊半径 阴影扩展半径 阴影颜色 ...

  3. C和C++书籍推荐

    http://bestcbooks.com/recommend/most-influential-book/ http://www.ruanyifeng.com/blog/2011/09/c_prog ...

  4. SSH安装篇之——SecureCRT连接(内网和外网)虚拟机中的Linux系统(Ubuntu)

    最近在学习Linux,看了网上很多SecureCRT连接本地虚拟机当中的Linux系统,很多都是需要设置Linux的配置文件,有点繁琐,所以自己就摸索了一下,把相关操作贴出来分享一下. SecureC ...

  5. sencha touch 可自动增长高度TextArea

    js代码如下: /* *高度自动增长的文本框 */ Ext.define('ux.TextArea', { extend: 'Ext.field.TextArea', xtype: 'autoText ...

  6. MySQL知识小结

    MySQL的知识面试中还是经常被问到的,简单的使用似乎无法达到面试官的要求,很多问题会关于Mysql存储引擎,所以这里还是需要系统学习一下Mysql的一些知识,面试过程中游刃有余. MySQL体系结构 ...

  7. 【转】C内存管理

    在任何程序设计环境及语言中,内存管理都十分重要.在目前的计算机系统或嵌入式系统中,内存资源仍然是有限的.因此在程序设计中,有效地管理内存资源是程序员首先考虑的问题. 第1节主要介绍内存管理基本概念,重 ...

  8. python中filter(),map()和reduce()的用法及区别

    先看filter()方法 print(list(filter(lambda n : n % 2 == 1, range(20))))# 结果 [1, 3, 5, 7, 9, 11, 13, 15, 1 ...

  9. 你不可缺少的技能——Markdown编辑

    Markdown简介 Markdown是一种可以使用普通文本编辑器编写的标记语言,通过简单的标记语法,它可以使普通文本内容具有一定的格式.请不要被「标记」.「语言」所迷惑,Markdown 的语法十分 ...

  10. 使用Properties配置文件 InputStream与FileReader (java)

    java 开发中,常常通过流读取的方式获取 配置文件数据,我们习惯使用properties文件,使用此文件需要注意 文件位置:任意,建议src下 文件名称:任意,扩展名为properties 文件内容 ...