题面


思路

我们可以把到每个点的期望步数算出来取max?但是直接算显然是不行的

那就可以用Min-Max来容斥一下

设\(g_{s}\)是从x到s中任意一个点的最小步数

设\(f_{s}\)是从x到s中任意一个点的最大步数

然后就可以的得到

\(f_{s}=\sum_{t\subseteq s}(-1)^{|t|+1}g_t\)

然后考虑g怎么求

设\(p_i\)是i点到任意一个子集中的点的最小步数

有\(p_u=\frac{1}{du_u}(1+p_{fa_u})+\frac{1}{du_u}\sum_{v\in child_u}(p_v+1)\)

然后我们令\(p_u=a_up_{fa_u}+b_u\)

很显然有\(p_u=\frac{1}{du_u}\sum(a_vf_u+b_v+1)+\frac{1}{du_u}(p_{fa_u})\)

然后移项可以得到\(a_u=\frac{1}{du_u-\sum a_v},b_u=\frac{\sum(b_v+1)+1}{du_u-\sum a_v}\)

然后因为x是根没有父亲,所以\(g_{s}=(bitcnt(s) \& 1)?b_u:-b_u\)

然后就可以用子集前缀和进行累加了

最后直接输出答案就可以了


#include <bits/stdc++.h>

using namespace std;

const int Mod = 998244353;
const int N = 20; int n, m, x;
int a[N], b[N], du[N];
int f[1 << N];
vector<int> g[N]; int main() {
#ifdef dream_maker
freopen("input.txt", "r", stdin);
#endif
function<int(int a, int b)> add = [&](int a, int b) {
return (a += b) >= Mod ? a - Mod : a;
}; function<int(int a, int b)> sub = [&](int a, int b) {
return (a -= b) < 0 ? a + Mod : a;
}; function<int(int a, int b)> mul = [&](int a, int b) {
return (long long) a * b % Mod;
}; function<int(int a, int b)> fast_pow = [&](int a, int b) {
int res = 1;
for (; b; b >>= 1, a = mul(a, a))
if (b & 1) res = mul(res, a);
return res;
}; function<int(int a)> bitcnt = [&](int a) {
int res = 0;
for (; a; a >>= 1)
if (a & 1) ++res;
return res;
}; function<void(int u, int fa, int s)> dfs = [&](int u, int fa, int s) {
if ((s >> (u - 1)) & 1) return;
a[u] = du[u], b[u] = (u == x) ? 0 : 1; // x不用向fa走的1
for (auto v : g[u]) {
if (v == fa) continue;
dfs(v, u, s);
a[u] = sub(a[u], a[v]);
b[u] = add(b[u], b[v] + 1);
}
a[u] = fast_pow(a[u], Mod - 2);
b[u] = mul(b[u], a[u]);
}; scanf("%d %d %d", &n, &m, &x);
for (int i = 1; i < n; i++) {
int u, v;
scanf("%d %d", &u, &v);
g[u].push_back(v);
g[v].push_back(u);
++du[u], ++du[v];
}
int up = (1 << n) - 1;
for (int s = 1; s <= up; s++) {
for (int i = 1; i <= n; i++)
a[i] = b[i] = 0;
dfs(x, 0, s);
f[s] = (bitcnt(s) & 1) ? b[x] : (Mod - b[x]) % Mod;
}
f[0] = 0;
for (int i = 1; i <= n; i++) { // 这个循环在外面
for (int s = 1; s <= up; s++) {
if ((s >> (i - 1)) & 1) {
f[s] = add(f[s], f[s ^ (1 << (i - 1))]);
}
}
}
while (m--) {
int num, cur, s = 0;
scanf("%d", &num);
while (num--) {
scanf("%d", &cur);
s |= 1 << (cur - 1);
}
printf("%d\n", f[s]);
}
return 0;
}

LOJ2542. 「PKUWC2018」随机游走【概率期望DP+Min-Max容斥(最值反演)】的更多相关文章

  1. loj2542 「PKUWC2018」随机游走 【树形dp + 状压dp + 数学】

    题目链接 loj2542 题解 设\(f[i][S]\)表示从\(i\)节点出发,走完\(S\)集合中的点的期望步数 记\(de[i]\)为\(i\)的度数,\(E\)为边集,我们很容易写出状态转移方 ...

  2. LOJ2542. 「PKUWC2018」随机游走

    LOJ2542. 「PKUWC2018」随机游走 https://loj.ac/problem/2542 分析: 为了学习最值反演而做的这道题~ \(max{S}=\sum\limits_{T\sub ...

  3. loj2542「PKUWC2018」随机游走

    题目描述 给定一棵 nn 个结点的树,你从点 xx 出发,每次等概率随机选择一条与所在点相邻的边走过去. 有 QQ 次询问,每次询问给定一个集合 SS,求如果从 xx 出发一直随机游走,直到点集 SS ...

  4. loj2542 「PKUWC2018」随机游走 MinMax 容斥+树上高斯消元+状压 DP

    题目传送门 https://loj.ac/problem/2542 题解 肯定一眼 MinMax 容斥吧. 然后问题就转化为,给定一个集合 \(S\),问期望情况下多少步可以走到 \(S\) 中的点. ...

  5. loj#2542. 「PKUWC2018」随机游走(树形dp+Min-Max容斥)

    传送门 首先,关于\(Min-Max\)容斥 设\(S\)为一个点的集合,每个点的权值为走到这个点的期望时间,则\(Max(S)\)即为走遍这个集合所有点的期望时间,\(Min(S)\)即为第一次走到 ...

  6. LOJ2540. 「PKUWC2018」随机算法【概率期望DP+状压DP】

    LINK 思路 首先在加入几个点之后所有的点都只有三种状态 一个是在独立集中,一个是和独立集联通,还有一个是没有被访问过 然后前两个状态是可以压缩起来的 因为我们只需要记录下当前独立集大小和是否被访问 ...

  7. Loj #2542. 「PKUWC2018」随机游走

    Loj #2542. 「PKUWC2018」随机游走 题目描述 给定一棵 \(n\) 个结点的树,你从点 \(x\) 出发,每次等概率随机选择一条与所在点相邻的边走过去. 有 \(Q\) 次询问,每次 ...

  8. 「PKUWC2018」随机游走(min-max容斥+FWT)

    「PKUWC2018」随机游走(min-max容斥+FWT) 以后题目都换成这种「」形式啦,我觉得好看. 做过重返现世的应该看到就想到 \(min-max\) 容斥了吧. 没错,我是先学扩展形式再学特 ...

  9. LOJ #2542「PKUWC2018」随机游走

    $ Min$-$Max$容斥真好用 $ PKUWC$滚粗后这题一直在$ todolist$里 今天才补掉..还要更加努力啊.. LOJ #2542 题意:给一棵不超过$ 18$个节点的树,$ 5000 ...

随机推荐

  1. 2018年全国多校算法寒假训练营练习比赛(第一场)G 圆圈

    https://www.nowcoder.com/acm/contest/67/G 思路: 分形. 记录中间左边点的坐标,然后推出另外3个点的坐标,递归到最简单的情况. 代码: #include< ...

  2. WinForm一次只打开一个程序

    WinForm如果我们希望一次只打开一个程序,那么我们在程序每次运行的时候都需要检测线程是否存在该程序,如果存在就呼出之前的窗体,C#代码如下: using System; using System. ...

  3. Spring Boot入门第二天:一个基于Spring Boot的Web应用,使用了Spring Data JPA和Freemarker。

    原文链接 今天打算从数据库中取数据,并展示到视图中.不多说,先上图: 第一步:添加依赖.打开pom.xml文件,添加必要的依赖,完整代码如下: <?xml version="1.0&q ...

  4. docker添加国内仓库安装iredmail

    centos 7: 1.yum install docker or yum update docker sudo tee /etc/docker/daemon.json <<-'EOF'{ ...

  5. 『科学计算』通过代码理解线性回归&Logistic回归模型

    sklearn线性回归模型 import numpy as np import matplotlib.pyplot as plt from sklearn import linear_model de ...

  6. Educational Codeforces Round 47 (Rated for Div. 2)F. Dominant Indices 线段树合并

    题意:有一棵树,对于每个点求子树中离他深度最多的深度是多少, 题解:线段树合并快如闪电,每个节点开一个权值线段树,递归时合并即可,然后维护区间最多的是哪个权值,到x的深度就是到根的深度减去x到根的深度 ...

  7. hdu-1404-博弈+打表

    Digital Deletions Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  8. zzuli1985(dp/水dfs郑轻比赛)

    再一次感受到dp的威力 1985: 即将到来的新生赛 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 112  Solved: 28 SubmitStat ...

  9. XML文档的读、写

    代码: XmlDocument doc = new XmlDocument(); doc.Load("Books.xml"); //1.加载要读取的XML文件 //要想看到数据得先 ...

  10. Apollo配置中心介绍

    参考链接:https://github.com/ctripcorp/apollo/wiki/Apollo%E9%85%8D%E7%BD%AE%E4%B8%AD%E5%BF%83%E4%BB%8B%E7 ...