Spark算子实战应用

数据集 :http://grouplens.org/datasets/movielens/ MovieLens 1M Datase

相关数据文件 :

users.dat ---UserID::Gender::Age::Occupation::Zip-code

movies.dat --- MovieID::Title::Genres

ratings.dat ---UserID::MovieID::Rating::Timestamp

SogouQ.mini

完成以下业务需求:

1. 年龄段在“18-24”的男性年轻人,最喜欢看哪10部

2.得分最高的10部电影;看过电影最多的前10个人;女性看多最多的10部电影;男性看过最多 的10部电影

3.利用数据集SogouQ2012.mini.tar.gz 将数据按照访问次数进行排序,求访问量前10的网站

scala实现代码如下:

package hw3
import org.apache.spark._ import scala.collection.immutable.HashSet
import org.apache.spark.rdd.RDD
/**
* @author BIGDATA
*/
object spark_hw3{
var sc:SparkContext=null
def main(args: Array[String]): Unit = {
val conf=new SparkConf().setAppName("MovieDemo")
.setMaster("local")
sc=new SparkContext(conf)
  //准备数据
val rating=sc.textFile("C:\\Users\\BIGDATA\\Desktop\\文件\\BigData\\Spark\\3.SparkCore_2\\data\\data\\ratings.dat")
.map(_.split("::")).map {x => (x(0),x(1),x(2))}
  //年龄段在“18-24”的男性年轻人,最喜欢看哪10部
top10LookeMovie   //得分最高的10部电影
val topKScoreMostMovie = rating.map{x =>
(x._2, (x._3.toInt, 1))
}.reduceByKey { (v1, v2) =>
(v1._1 + v2._1, v1._2 + v2._2)
}.map { x =>
(x._2._1.toDouble / x._2._2.toDouble, x._1)
}.sortByKey(false).
take(10).
foreach(println)

   //女性看最多的10部电影
top10FaleLookMovie
  //男性看最多的10部电影

    top10MaleLookMovie 

  
//看过电影最多的前10个人
val topKmostPerson = rating.map{ x =>
(x._1, 1)
}.reduceByKey(_ + _).
map(x =>(x._2, x._1)).
sortByKey(false).
take(10).
foreach(println) val brower = sc.textFile("C:\\Users\\BIGDATA\\Desktop\\文件\\BigData\\Spark\\3.SparkCore_2\\SogouQ2012.mini\\SogouQ.mini")
val brs=brower.map(_.split("\t")).map { x =>
x(5)
}.cache
//访问量前10的网站
val topKBrower = brs.flatMap(_.split(" ")).map((_, 1)).reduceByKey(_+_)
.sortBy(_._2, false)
.take(10)
.foreach(println) } /**
* @param sc SparkContext对象
* @return 返回用户信息
*/
def getUsers(sc:SparkContext):RDD[Array[String]]={
val scobj=sc
val users=scobj.textFile("C:\\Users\\BIGDATA\\Desktop\\文件\\BigData\\Spark\\3.SparkCore_2\\data\\data\\users.dat")
.map(_.split("::"))
users
} /**
* @param sc
* @return 返回电影信息
*/
def getMovies(sc:SparkContext):RDD[Array[String]]={
val scobj=sc
val movies=scobj.textFile("C:\\Users\\BIGDATA\\Desktop\\文件\\BigData\\Spark\\3.SparkCore_2\\data\\data\\movies.dat")
.map(_.split("::"))
movies
} /**
*
* @param sc
* @return 电影评分信息
*/
def getRatings(sc:SparkContext):RDD[Array[String]]={
val scobj=sc
val ratings=scobj.textFile("C:\\Users\\BIGDATA\\Desktop\\文件\\BigData\\Spark\\3.SparkCore_2\\data\\data\\ratings.dat")
.map(_.split("::"))
ratings
}
def top10LookeMovie: Unit ={
//获取年龄段在“18-24”的男性年轻人的userid
val users=getUsers(sc)
val userList=users.filter(x=>x(1).equals("M") && x(2).toInt>=18 && x(2).toInt<=24)
.map(x=>x(0)).collect()
//注意:HashSet()后面要带小括号
val userSet=HashSet() ++ userList
//创建广播变量
val broadcastUserSet=sc.broadcast(userSet)
//统计出18-24岁男性喜欢看的前10名电影的movieid和次数
val ratings=getRatings(sc)
val topNMovies=ratings.map(x=>(x(0),x(1))) //ratings中所有的(userid,movieid)
//从rating数据过滤出“18-24”的男性年轻人的观影信息
.filter(x=>broadcastUserSet.value.contains(x._1))
.map(x=>(x._2,1))
.reduceByKey(_+_) //(movieid,次数)
.sortBy(_._2,false)
.take(10) //(movieid,次数) val movies=getMovies(sc)
//获取所有电影的(movieid,title)
val movieTitle=movies.map(x=>(x(0),x(1))).collect().toMap
topNMovies.map(x=>(movieTitle.getOrElse(x._1,null),x._2))
.foreach(x=>println(x._1+" "+x._2))
} /**
* 女性看过最多的10部电影
*/
def top10FaleLookMovie: Unit ={
val users = getUsers(sc)
//获取所有女性的userid
val faleUserId = users.filter(x => x(1).equals("F"))
.map(x => x(0)).collect()
val faleUserSet = HashSet() ++ faleUserId
//创建广播变量,里面存储所有女性的userid
val broadcastFaleSet = sc.broadcast(faleUserSet) val ratings = getRatings(sc)
//统计出女性看过最多的10部电影的(movieid,观看次数)
val top10moiveid = ratings.map(x => (x(0), x(1))) //(userid,movieid)
//过滤出女性观影数据
.filter(x => broadcastFaleSet.value.contains(x._1))
.map(x => (x._2, 1)) //(movieid,1)
.reduceByKey(_ + _)
.sortBy(_._2, false)
.take(10)
val top10movieRDD=sc.parallelize(top10moiveid) //(movieid,次数) val movies=getMovies(sc)
val allmoviesRDD=movies.map(x=>(x(0),x(1))) //(movieid,title)
//对两个RDD进行join操作,取二者的共同匹配项
allmoviesRDD.join(top10movieRDD) //(movieid,(title,次数))
.map(x=>(x._1,x._2._1,x._2._2))
.foreach(x=>println(x._1+" "+x._2+" "+x._3))
} /**
* 男性看过最多的10部电影
*/
def top10MaleLookMovie: Unit ={
val users = getUsers(sc)
//获取所有男性的userid
val faleUserId = users.filter(x => x(1).equals("M"))
.map(x => x(0)).collect()
val faleUserSet = HashSet() ++ faleUserId
//创建广播变量,里面存储所有男性的userid
val broadcastFaleSet = sc.broadcast(faleUserSet) val ratings = getRatings(sc)
//统计出男性看过最多的10部电影的(movieid,观看次数)
val top10moiveid = ratings.map(x => (x(0), x(1))) //(userid,movieid)
//过滤出男性观影数据
.filter(x => broadcastFaleSet.value.contains(x._1))
.map(x => (x._2, 1)) //(movieid,1)
.reduceByKey(_ + _)
.sortBy(_._2, false)
.take(10)
val top10movieRDD=sc.parallelize(top10moiveid) //(movieid,次数) val movies=getMovies(sc)
val allmoviesRDD=movies.map(x=>(x(0),x(1))) //(movieid,title)
//对两个RDD进行join操作,取二者的共同匹配项
allmoviesRDD.join(top10movieRDD) //(movieid,(title,次数))
.map(x=>(x._1,x._2._1,x._2._2))
.foreach(x=>println(x._1+" "+x._2+" "+x._3))
} }

  

Spark算子---实战应用的更多相关文章

  1. Spark入门实战系列--1.Spark及其生态圈简介

    [注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 .简介 1.1 Spark简介 年6月进入Apache成为孵化项目,8个月后成为Apache ...

  2. Spark入门实战系列--3.Spark编程模型(上)--编程模型及SparkShell实战

    [注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 .Spark编程模型 1.1 术语定义 l应用程序(Application): 基于Spar ...

  3. 倾情大奉送--Spark入门实战系列

    这一两年Spark技术很火,自己也凑热闹,反复的试验.研究,有痛苦万分也有欣喜若狂,抽空把这些整理成文章共享给大家.这个系列基本上围绕了Spark生态圈进行介绍,从Spark的简介.编译.部署,再到编 ...

  4. Spark入门实战系列--10.分布式内存文件系统Tachyon介绍及安装部署

    [注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 .Tachyon介绍 1.1 Tachyon简介 随着实时计算的需求日益增多,分布式内存计算 ...

  5. Spark入门实战系列--2.Spark编译与部署(上)--基础环境搭建

    [注] 1.该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取: 2.Spark编译与部署将以CentOS 64位操作系统为基础,主要是考虑到实际应用 ...

  6. Spark入门实战系列--2.Spark编译与部署(中)--Hadoop编译安装

    [注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 .编译Hadooop 1.1 搭建环境 1.1.1 安装并设置maven 1. 下载mave ...

  7. Spark入门实战系列--2.Spark编译与部署(下)--Spark编译安装

    [注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 .编译Spark .时间不一样,SBT是白天编译,Maven是深夜进行的,获取依赖包速度不同 ...

  8. Spark入门实战系列--3.Spark编程模型(下)--IDEA搭建及实战

    [注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 . 安装IntelliJ IDEA IDEA 全称 IntelliJ IDEA,是java语 ...

  9. Spark入门实战系列--4.Spark运行架构

    [注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 1. Spark运行架构 1.1 术语定义 lApplication:Spark Appli ...

随机推荐

  1. Linux 4.10中两个新特性与我的一段故事

    今早5点半起来没有開始写文章,而是去西湾红树林连跑带走折腾了将近20公里.回来后就8点多了...洗了个澡之后坐稳当.開始写一段关于我的故事.        在2014年到2015年期间,我在负责研发一 ...

  2. springboot 中文文档

    springboot 中文文档https://qbgbook.gitbooks.io/spring-boot-reference-guide-zh/content/

  3. FIR基本型仿真_03

    作者:桂. 时间:2018-02-05 20:50:54 链接:http://www.cnblogs.com/xingshansi/p/8419452.html 一.仿真思路 设计低通滤波器(5阶,6 ...

  4. 稀疏傅里叶变换(sparse FFT)

    作者:桂. 时间:2018-01-06  14:00:25 链接:http://www.cnblogs.com/xingshansi/p/8214122.html 前言 对于数字接收来讲,射频域随着带 ...

  5. 关于如果从SQLSERVER中获取 数据库信息 或者 表信息

    1.首先呢.要明确一点.SQLSERVER中的系统信息一般都无从table中找到的.通常都在View中找到 这是重点. 2.接着我们打开算起来SQLSERVER,展开你某一数据库.看到类似 3.然后展 ...

  6. ASP.NET MVC中切换模板页(不同目录的cshtml文件)

    看来以后建立一个父类控制器还是有必要的... using System;using System.Collections.Generic;using System.Linq;using System. ...

  7. 随便浏览感觉简单易用的Orm

    https://www.cnblogs.com/babietongtianta/p/4365195.html CYQ ITDOS CHOLE.ORM

  8. impress.js 一个创建在线幻灯的js库

    真的好奇怪,我居然会写前端技术的博客.没有办法的,最近实习,看的大多是前端.所以今天就用这个来练练手了. Impress.js 是一个非常棒的用来创建在线演示的Javascript库.它基于CSS3转 ...

  9. yum rpm 命令一运行就卡住 只有kill 掉

    由于rpm的数据库出现异常导至直接卡死,造成这种异常是因为之前不正常的安装或查询. 解决方法: # rm -f /var/lib/rpm/__db.00* #删除rpm数据文件 # rpm --reb ...

  10. HTML5学习笔记(二):HTML基础学习之二

    表单 表单用来传递用户数据,多用来与后端进行数据交互. 前端: <!DOCTYPE html> <html lang="en"> <head> ...