[转]TF-IDF与余弦相似性的应用(一):自动提取关键词
这个标题看上去好像很复杂,其实我要谈的是一个很简单的问题。
有一篇很长的文章,我要用计算机提取它的关键词(Automatic Keyphrase extraction),完全不加以人工干预,请问怎样才能正确做到?
这个问题涉及到数据挖掘、文本处理、信息检索等很多计算机前沿领域,但是出乎意料的是,有一个非常简单的经典算法,可以给出令人相当满意的结果。它简单到都不需要高等数学,普通人只用10分钟就可以理解,这就是我今天想要介绍的TF-IDF算法。
让我们从一个实例开始讲起。假定现在有一篇长文《中国的蜜蜂养殖》,我们准备用计算机提取它的关键词。

一个容易想到的思路,就是找到出现次数最多的词。如果某个词很重要,它应该在这篇文章中多次出现。于是,我们进行"词频"(Term Frequency,缩写为TF)统计。
结果你肯定猜到了,出现次数最多的词是----"的"、"是"、"在"----这一类最常用的词。它们叫做"停用词"(stop words),表示对找到结果毫无帮助、必须过滤掉的词。
假设我们把它们都过滤掉了,只考虑剩下的有实际意义的词。这样又会遇到了另一个问题,我们可能发现"中国"、"蜜蜂"、"养殖"这三个词的出现次数一样多。这是不是意味着,作为关键词,它们的重要性是一样的?
显然不是这样。因为"中国"是很常见的词,相对而言,"蜜蜂"和"养殖"不那么常见。如果这三个词在一篇文章的出现次数一样多,有理由认为,"蜜蜂"和"养殖"的重要程度要大于"中国",也就是说,在关键词排序上面,"蜜蜂"和"养殖"应该排在"中国"的前面。
所以,我们需要一个重要性调整系数,衡量一个词是不是常见词。如果某个词比较少见,但是它在这篇文章中多次出现,那么它很可能就反映了这篇文章的特性,正是我们所需要的关键词。
用统计学语言表达,就是在词频的基础上,要对每个词分配一个"重要性"权重。最常见的词("的"、"是"、"在")给予最小的权重,较常见的词("中国")给予较小的权重,较少见的词("蜜蜂"、"养殖")给予较大的权重。这个权重叫做"逆文档频率"(Inverse Document Frequency,缩写为IDF),它的大小与一个词的常见程度成反比。
知道了"词频"(TF)和"逆文档频率"(IDF)以后,将这两个值相乘,就得到了一个词的TF-IDF值。某个词对文章的重要性越高,它的TF-IDF值就越大。所以,排在最前面的几个词,就是这篇文章的关键词。
下面就是这个算法的细节。
第一步,计算词频。

考虑到文章有长短之分,为了便于不同文章的比较,进行"词频"标准化。

或者

第二步,计算逆文档频率。
这时,需要一个语料库(corpus),用来模拟语言的使用环境。

如果一个词越常见,那么分母就越大,逆文档频率就越小越接近0。分母之所以要加1,是为了避免分母为0(即所有文档都不包含该词)。log表示对得到的值取对数。
第三步,计算TF-IDF。

可以看到,TF-IDF与一个词在文档中的出现次数成正比,与该词在整个语言中的出现次数成反比。所以,自动提取关键词的算法就很清楚了,就是计算出文档的每个词的TF-IDF值,然后按降序排列,取排在最前面的几个词。
还是以《中国的蜜蜂养殖》为例,假定该文长度为1000个词,"中国"、"蜜蜂"、"养殖"各出现20次,则这三个词的"词频"(TF)都为0.02。然后,搜索Google发现,包含"的"字的网页共有250亿张,假定这就是中文网页总数。包含"中国"的网页共有62.3亿张,包含"蜜蜂"的网页为0.484亿张,包含"养殖"的网页为0.973亿张。则它们的逆文档频率(IDF)和TF-IDF如下:

从上表可见,"蜜蜂"的TF-IDF值最高,"养殖"其次,"中国"最低。(如果还计算"的"字的TF-IDF,那将是一个极其接近0的值。)所以,如果只选择一个词,"蜜蜂"就是这篇文章的关键词。
除了自动提取关键词,TF-IDF算法还可以用于许多别的地方。比如,信息检索时,对于每个文档,都可以分别计算一组搜索词("中国"、"蜜蜂"、"养殖")的TF-IDF,将它们相加,就可以得到整个文档的TF-IDF。这个值最高的文档就是与搜索词最相关的文档。
TF-IDF算法的优点是简单快速,结果比较符合实际情况。缺点是,单纯以"词频"衡量一个词的重要性,不够全面,有时重要的词可能出现次数并不多。而且,这种算法无法体现词的位置信息,出现位置靠前的词与出现位置靠后的词,都被视为重要性相同,这是不正确的。(一种解决方法是,对全文的第一段和每一段的第一句话,给予较大的权重。)
原文地址:http://www.ruanyifeng.com/blog/2013/03/tf-idf.html
[转]TF-IDF与余弦相似性的应用(一):自动提取关键词的更多相关文章
- TF-IDF与余弦相似性的应用(一):自动提取关键词
这个标题看上去好像很复杂,其实我要谈的是一个很简单的问题. 有一篇很长的文章,我要用计算机提取它的关键词(Automatic Keyphrase extraction),完全不加以人工干预,请问怎样才 ...
- TF-IDF与余弦相似性的应用(一):自动提取关键词 - 阮一峰的网络日志
TF-IDF与余弦相似性的应用(一):自动提取关键词 - 阮一峰的网络日志 TF-IDF与余弦相似性的应用(一):自动提取关键词 作者: 阮一峰 日期: 2013年3月15日 ...
- TF/IDF(term frequency/inverse document frequency)
TF/IDF(term frequency/inverse document frequency) 的概念被公认为信息检索中最重要的发明. 一. TF/IDF描述单个term与特定document的相 ...
- 基于TF/IDF的聚类算法原理
一.TF/IDF描述单个term与特定document的相关性TF(Term Frequency): 表示一个term与某个document的相关性. 公式为这个term在document中出 ...
- TF-IDF与余弦相似性的应用(二):找出相似文章
上一次,我用TF-IDF算法自动提取关键词. 今天,我们再来研究另一个相关的问题.有些时候,除了找到关键词,我们还希望找到与原文章相似的其他文章.比如,"Google新闻"在主新闻 ...
- 使用solr的函数查询,并获取tf*idf值
1. 使用函数df(field,keyword) 和idf(field,keyword). http://118.85.207.11:11100/solr/mobile/select?q={!func ...
- TF/IDF计算方法
FROM:http://blog.csdn.net/pennyliang/article/details/1231028 我们已经谈过了如何自动下载网页.如何建立索引.如何衡量网页的质量(Page R ...
- tf–idf算法解释及其python代码实现(下)
tf–idf算法python代码实现 这是我写的一个tf-idf的简单实现的代码,我们知道tfidf=tf*idf,所以可以分别计算tf和idf值在相乘,首先我们创建一个简单的语料库,作为例子,只有四 ...
- tf–idf算法解释及其python代码实现(上)
tf–idf算法解释 tf–idf, 是term frequency–inverse document frequency的缩写,它通常用来衡量一个词对在一个语料库中对它所在的文档有多重要,常用在信息 ...
- 文本分类学习(三) 特征权重(TF/IDF)和特征提取
上一篇中,主要说的就是词袋模型.回顾一下,在进行文本分类之前,我们需要把待分类文本先用词袋模型进行文本表示.首先是将训练集中的所有单词经过去停用词之后组合成一个词袋,或者叫做字典,实际上一个维度很大的 ...
随机推荐
- VC CListCtrl 第一列列宽自适应
原文链接: http://www.cnblogs.com/sephil/archive/2011/04/03/2004384.html 今天用VC写工具的时候用到CListView,并且ListCtr ...
- 坑爹的高德地图API
症状 ld: '-[MASearch poiSearchWithOption:]' in *****/Release-iphonesimulator/libMASearchKit.a(MASearch ...
- matlab入门笔记(七):数据文件I/O
- 带你开始进入NPM的世界之NPM包的开发
个人开发包的目录结构 ├── coverage //istanbul测试覆盖率生成的文件 ├── index.js //入口文件 ├── introduce.md //说明文件 ├── lib │ ...
- 非正常关闭vi编辑器时会生成一个.swp文件
非正常关闭vi编辑器时会生成一个.swp文件 关于swp文件 使用vi,经常可以看到swp这个文件,那这个文件是怎么产生的呢,当你打开一个文件,vi就会生成这么一个.(filename)swp文件以备 ...
- 孰优孰劣?Dubbo VS Spring Cloud性能测试大对决!
最近我们试图从Dubbo迁移到Spring Cloud.为此对二者分别进行了性能测试.为了得出数据量不同的情况下的二者的性能表现,我们分别准备了一个25个属性pojo对象和一个50个属性的pojo对象 ...
- JDBC 事务和 JTA 事务
Java事务的类型有三种:JDBC事务.JTA(Java Transaction API)事务.容器事务. 常见的容器事务如Spring事务,容器事务主要是J2EE应用服务器提供的,容器事务大多是基于 ...
- impress.js 一个创建在线幻灯的js库
真的好奇怪,我居然会写前端技术的博客.没有办法的,最近实习,看的大多是前端.所以今天就用这个来练练手了. Impress.js 是一个非常棒的用来创建在线演示的Javascript库.它基于CSS3转 ...
- C++中的友元函数和友元类
C++中的友元函数主要应用于以下场景: 友元函数 第一种场景 代码中有一个全局函数,该函数想要去访问某个类的成员变量(该类的成员变量是private的,且该类并未提供任何获取获取私有成员变量的publ ...
- nginx 屏蔽恶意请求
https://www.xlongwei.com/detail/nginx-%E5%B1%8F%E8%94%BD%E6%81%B6%E6%84%8F%E8%AF%B7%E6%B1%82 nginx可以 ...