Spark Storage(二) 集群下的broadcast
Broadcast 简单来说就是将数据从一个节点复制到其他各个节点,常见用于数据复制到节点本地用于计算,在前面一章中讨论过Storage模块中BlockManager,Block既可以保存在内存中,也可以保存在磁盘中,当Executor节点本地没有数据,通过Driver去获取数据
Spark的官方描述:
A broadcast variable. Broadcast variables allow the programmer to keep a read-only variable
* cached on each machine rather than shipping a copy of it with tasks. They can be used, for
* example, to give every node a copy of a large input dataset in an efficient manner. Spark also
* attempts to distribute broadcast variables using efficient broadcast algorithms to reduce
* communication cost.
在Broadcast中,Spark只是传递只读变量的内容,通常如果一个变量更新会涉及到多个节点的该变量的数据同步更新,为了保证数据一致性,Spark在broadcast 中只传递不可修改的数据。
Broadcast 只是细粒度化到executor? 在storage前面的文章中讨论过BlockID 是以executor和实际的block块组合的,executor 是执行submit的任务的子worker进程,随着任务的结束而结束,对executor里执行的子任务是同一进程运行,数据可以进程内直接共享(内存),所以BroadCast只需要细粒度化到executor就足够了
TorrentBroadCast
Spark在老的版本1.2中有HttpBroadCast,但在2.1版本中就移除了,HttpBroadCast 中实现的原理是每个executor都是通过Driver来获取Data数据,这样很明显的加大了Driver的网络负载和压力,无法解决Driver的单点性能问题。
为了解决Driver的单点问题,Spark使用了Block Torrent的方式。
1. Driver 初始化的时候,会知道有几个executor,以及多少个Block, 最后在Driver端会生成block所对应的节点位置,初始化的时候因为executor没有数据,所有块的location都是Driver
2. Executor 进行运算的时候,从BlockManager里的获取本地数据,如果本地数据不存在,然后从driver获取数据的位置
bm.getLocalBytes(pieceId) match {
case Some(block) =>
blocks(pid) = block
releaseLock(pieceId)
case None =>
bm.getRemoteBytes(pieceId) match {
case Some(b) =>
if (checksumEnabled) {
val sum = calcChecksum(b.chunks())
if (sum != checksums(pid)) {
throw new SparkException(s"corrupt remote block $pieceId of $broadcastId:" +
s" $sum != ${checksums(pid)}")
}
}
// We found the block from remote executors/driver's BlockManager, so put the block
// in this executor's BlockManager.
if (!bm.putBytes(pieceId, b, StorageLevel.MEMORY_AND_DISK_SER, tellMaster = true)) {
throw new SparkException(
s"Failed to store $pieceId of $broadcastId in local BlockManager")
}
blocks(pid) = b
case None =>
throw new SparkException(s"Failed to get $pieceId of $broadcastId")
}
3. Driver里保存的块的位置只有Driver自己有,所以返回executer的位置列表只有driver
private def getLocations(blockId: BlockId): Seq[BlockManagerId] = {
if (blockLocations.containsKey(blockId)) blockLocations.get(blockId).toSeq else Seq.empty
}
4. 通过块的传输通道从Driver里获取到数据
blockTransferService.fetchBlockSync(
loc.host, loc.port, loc.executorId, blockId.toString).nioByteBuffer()
5. 获取数据后,使用BlockManager.putBytes ->最后使用doPutBytes保存数据
private def doPutBytes[T](
blockId: BlockId,
bytes: ChunkedByteBuffer,
level: StorageLevel,
classTag: ClassTag[T],
tellMaster: Boolean = true,
keepReadLock: Boolean = false): Boolean = {
.....
val putBlockStatus = getCurrentBlockStatus(blockId, info)
val blockWasSuccessfullyStored = putBlockStatus.storageLevel.isValid
if (blockWasSuccessfullyStored) {
// Now that the block is in either the memory or disk store,
// tell the master about it.
info.size = size
if (tellMaster && info.tellMaster) {
reportBlockStatus(blockId, putBlockStatus)
}
addUpdatedBlockStatusToTaskMetrics(blockId, putBlockStatus)
}
logDebug("Put block %s locally took %s".format(blockId, Utils.getUsedTimeMs(startTimeMs)))
if (level.replication > ) {
// Wait for asynchronous replication to finish
try {
Await.ready(replicationFuture, Duration.Inf)
} catch {
case NonFatal(t) =>
throw new Exception("Error occurred while waiting for replication to finish", t)
}
}
if (blockWasSuccessfullyStored) {
None
} else {
Some(bytes)
}
}.isEmpty
}
6. 在保存数据后同时汇报该Block的状态到Driver
7. Driver更新executor 的BlockManager的状态,并且把Executor的地址加入到该BlockID的地址集合中
private def updateBlockInfo(
blockManagerId: BlockManagerId,
blockId: BlockId,
storageLevel: StorageLevel,
memSize: Long,
diskSize: Long): Boolean = { if (!blockManagerInfo.contains(blockManagerId)) {
if (blockManagerId.isDriver && !isLocal) {
// We intentionally do not register the master (except in local mode),
// so we should not indicate failure.
return true
} else {
return false
}
} if (blockId == null) {
blockManagerInfo(blockManagerId).updateLastSeenMs()
return true
} blockManagerInfo(blockManagerId).updateBlockInfo(blockId, storageLevel, memSize, diskSize) var locations: mutable.HashSet[BlockManagerId] = null
if (blockLocations.containsKey(blockId)) {
locations = blockLocations.get(blockId)
} else {
locations = new mutable.HashSet[BlockManagerId]
blockLocations.put(blockId, locations)
} if (storageLevel.isValid) {
locations.add(blockManagerId)
} else {
locations.remove(blockManagerId)
} // Remove the block from master tracking if it has been removed on all slaves.
if (locations.size == ) {
blockLocations.remove(blockId)
}
true
}
如何实现Torrent?
1. 为了避免Driver的单点问题,在上面的分析中每个executor如果本地不存在数据的时候,通过Driver获取了该BlockId的位置的集合,executor获取到BlockId的地址集合随机化后,优先找同主机的地址(这样可以走回环),然后从随机的地址集合按顺序取地址一个一个尝试去获取数据,因为随机化了地址,那么executor不只会从Driver去获取数据
/**
* Return a list of locations for the given block, prioritizing the local machine since
* multiple block managers can share the same host.
*/
private def getLocations(blockId: BlockId): Seq[BlockManagerId] = {
val locs = Random.shuffle(master.getLocations(blockId))
val (preferredLocs, otherLocs) = locs.partition { loc => blockManagerId.host == loc.host }
preferredLocs ++ otherLocs
}
2. BlockID 的随机化
通常数据会被分为多个BlockID,取决于你设置的每个Block的大小
spark.broadcast.blockSize=10M
在获取完整的BlockID块的时候,在Torrent的算法中,随机化了BlockID
for (pid <- Random.shuffle(Seq.range(, numBlocks))) {
......
}
在任务启动的时候,新启的executor都会同时从driver去获取数据,大家如果都是以相同的Block的顺序,基本上的每个Block数据对executor还是会从Driver去获取, 而BlockID的简单随机化就可以保证每个executor从driver获取到不同的块,当不同的executor在取获取其他块的时候就有机会从其他的executor上获取到,从而分散了对Driver的负载压力。
Spark Storage(二) 集群下的broadcast的更多相关文章
- Spark Storage(一) 集群下的区块管理
Storage模块 在Spark中提及最多的是RDD,而RDD所交互的数据是通过Storage来实现和管理 Storage模块整体架构 1. 存储层 在Spark里,单节点的Storage的管理是通过 ...
- spark高可用集群搭建及运行测试
文中的所有操作都是在之前的文章spark集群的搭建基础上建立的,重复操作已经简写: 之前的配置中使用了master01.slave01.slave02.slave03: 本篇文章还要添加master0 ...
- 用redis实现TOMCAT集群下的session共享
上篇实现了 LINUX中NGINX反向代理下的TOMCAT集群(http://www.cnblogs.com/yuanjava/p/6850764.html) 这次我们在上篇的基础上实现session ...
- Spark高可用集群搭建
Spark高可用集群搭建 node1 node2 node3 1.node1修改spark-env.sh,注释掉hadoop(就不用开启Hadoop集群了),添加如下语句 export ...
- was集群下基于接口分布式架构和开发经验谈
版权声明:本文为博主原创文章,未经博主同意不得转载. https://blog.csdn.net/luozhonghua2014/article/details/34084935 某b项目是我首 ...
- 如何解决quartz在集群下出现的资源抢夺现象
Quartz是一个开源的作业调度框架,它完全由Java写成,并设计用于J2SE和J2EE应用中.它提供了巨大的灵活性而不牺牲简单性.你能够用它来为执行一个作业而创建简单的或复杂的调度,简单的说就是可以 ...
- Spark on Yarn 集群运行要点
实验版本:spark-1.6.0-bin-hadoop2.6 本次实验主要是想在已有的Hadoop集群上使用Spark,无需过多配置 1.下载&解压到一台使用spark的机器上即可 2.修改配 ...
- 搭建Spark高可用集群
Spark简介 官网地址:http://spark.apache.org/ Apache Spark™是用于大规模数据处理的统一分析引擎. 从右侧最后一条新闻看,Spark也用于AI人工智能 sp ...
- Jenkins集群下的pipeline实战
关于Jenkins集群 在<快速搭建Jenkins集群>一文中,我们借助docker快速搭建了Jenkins集群,今天就在这个集群环境中创建pipeline任务,体验Jenkins集群下的 ...
随机推荐
- 《转载》WIN10 64位系统 32位Python2.7 PIL安装
http://blog.csdn.net/kanamisama0/article/details/53960281 首先安装这个真的出了好多问题,之前装过一次PIL也失败了,就一直没管,今天刚好找了机 ...
- vim重复操作的宏录制
在编辑某个文件的时候,可能会出现需要对某种特定的操作进行许多次的情况,以编辑下面的文件为例: ;==================================================== ...
- css布局 - 九宫格布局的方法汇总(更新中...)
目录: margin负值实现 祖父和亲爹的里应外合 换个思路 - li生了儿子帮大忙. 借助absolute方位值,实现自适应的网格布局 cloumn多栏布局 grid display: table: ...
- Promise 必知必会的面试题
Promise 想必大家都十分熟悉,想想就那么几个 api,可是你真的了解 Promise 吗?本文根据 Promise 的一些知识点总结了十道题,看看你能做对几道. 以下 promise 均指代 P ...
- windows 电脑配置信息检测
内存条 DDR4 DDR4相比DDR3最大的区别有: 1)处理器:每次内存升级换代时,必须支持的就是处理器.Haswell-E平台的内存同IVB-E/SNB-E一样为四通道设计,DDR4内存频率原生支 ...
- 数据导入报错:Got a packet bigger than‘max_allowed_packet’bytes的问题
数据导入报错:Got a packet bigger than‘max_allowed_packet’bytes的问题 2个解决方法: 1.临时修改:mysql>set global max_a ...
- Apache Shiro 反序列化RCE漏洞
漏洞介绍 漏洞类型 :JAVA反序列化(RCE) 影响版本 :Apache Shiro 1.2.4及其之前版本 漏洞评级 :高危 漏洞分析 #: 下载漏洞环境: git clone https://g ...
- golang学习资料[Basic]
http://devs.cloudimmunity.com/gotchas-and-common-mistakes-in-go-golang/index.html 基础语法 <Go By Exa ...
- 【转】Hudson插件Email-Ext邮件模板时间格式化的解决方法
原文地址:http://www.cnblogs.com/haycco/archive/2012/03/20/3031397.html 最近因对Hudson版本进行了升级为2.2.0,所以各方面都在搞项 ...
- 【转】python中json.loads与eval的区别
JSON有两种结构: “名称/值”对的集合(A collection of name/value pairs).不同的语言中,它被理解为对象(object),纪录(record),结构(struct) ...