- 要理解梯度下降和牛顿迭代法的区别

#include<stdio.h>
// 1. 线性多维函数原型是 y = f(x1,x2,x3) = a * x1 + b * x2 + c * x3
//
// 2. 用牛顿迭代法(或者梯度下降) 对 f(x1, x2, x3) 做求解。
// 即找到一组[a,b,c], 使得: argMin E[(f(x1,x2,x3) - y)^2]。 其中E为sigma。这个loss func就是最小二乘法 int main() { float arr_x1[] = {0.21181724817,0.860486757342,0.956633419758,0.85786906396,0.404354018005,0.738141237944,0.335462707932,0.855141891858,0.176675723263,0.907416965072,0.0647332687491,0.915688359157,0.388378883996,0.551590696253,0.252475234136,0.324609487448,0.591531727445,0.759460513689,0.455169604119,0.0114764793446,0.616362135632,0.520994743026,0.763576588722,0.252922367859,0.818731143784,0.201276597938,0.409109798669,0.837302929696,0.540137128835,0.640703160538,0.261071730719,0.60358418799,0.030230766662,0.375696128756,0.617101348229,0.99638041503,0.453397032368,0.697677962738,0.242718172939,0.694031285076,0.884499352369,0.1246164663,0.906583423555,0.610205156141,0.285249324615,0.443180950782,0.596761799846,0.634037833318,0.719341876615,0.899475824374};
float arr_x2[] = {0.949950993199,0.00348950593906,0.0995940827871,0.181585781352,0.245298785684,0.829835408054,0.46656568642,0.442514659946,0.218085519565,0.175017901553,0.137705361599,0.312323402349,0.570600016776,0.731451385259,0.469180900687,0.91530892778,0.153035033536,0.346216813834,0.469174138374,0.79429539697,0.0755359387891,0.461955557514,0.914175817629,0.208472593729,0.468003630737,0.626639369858,0.253670292305,0.7493809477,0.322969279989,0.0305604977161,0.414165510912,0.450261998842,0.332274387177,0.560607807568,0.947039157859,0.366802949708,0.961887248758,0.13159797726,0.16114436169,0.552001416778,0.820164333967,0.354051649783,0.203087374238,0.573542775689,0.763082181161,0.47376657072,0.727405079739,0.967446971274,0.00134569831871,0.345040334393};
float arr_x3[] = {0.66411293783,0.0107546377332,0.0548870004442,0.720490687668,0.571440908761,0.433915862985,0.884647342299,0.639299914284,0.603025573277,0.419795660433,0.153465995146,0.503899737771,0.286040546608,0.940436883787,0.651074548109,0.745058907863,0.0356272620881,0.894616931387,0.726118880129,0.518993827948,0.786363964595,0.222242295981,0.0338350110881,0.448694787879,0.472714446765,0.266573405515,0.754216764327,0.333970079798,0.950908128673,0.433706942368,0.650219610743,0.0619899568179,0.20517216498,0.183507724831,0.179897813532,0.88001043946,0.935991402921,0.929004108888,0.700231732841,0.326770142533,0.516633979936,0.685462636021,0.88460477795,0.8850575409,0.0368877767664,0.0791417202543,0.970113022457,0.158824081205,0.318974735222,0.504788407121};
float arr_y[] = {3.19986397889,2.59951370428,3.12490306905,3.65818074077,2.27578741609,4.30852373796,2.8246394015,4.09022421593,1.56985189029,3.4930805541,0.624040036155,3.87635573087,2.59304482554,4.05881562909,2.34757909085,3.54990861588,2.11692801283,3.86581396674,3.03088945846,2.14247671464,2.78700502684,2.70984886589,4.15389074944,1.62535051756,3.8650212131,2.12406010007,2.48954342068,4.3446533577,3.2173108431,2.41765575668,2.26257330317,2.77411897078,0.960613946438,2.43186832632,3.92609440302,4.60315121046,4.21998299775,3.28535511407,1.75098266657,3.51380638512,4.81098457321,1.76833993158,4.0108419056,3.86281812345,2.4193713593,2.35659224015,4.21597033336,3.99665270207,2.48028794333,3.89358362917}; double a=1.0,b=1.0,c=1.0;
double lr=0.0005;
int i,j=; while(j<1e6)
{
double temp=0.0,sum=0.0;
double da=0.0,db=0.0,dc=0.0;
for( i=;i<;i++)
{
temp=a*arr_x1[i]+b*arr_x2[i]+c*arr_x3[i]-arr_y[i];
sum+=temp*temp;
da+=temp**arr_x1[i];
db+=temp**arr_x2[i];
dc+=temp**arr_x3[i];
}
a=a-lr*da;
b=b-lr*db;
c=c-lr*dc; j++;
if(j%==)
printf("iter: %d ;sum :%f\n",j,sum); }
printf("%f,%f,%f\n",a,b,c);
}

-  第一题就二维网格上A->B的路径数量,其中有mask限制!

2018.08.28 ali 梯度下降法实现最小二乘的更多相关文章

  1. 2018.08.28 洛谷P4556 [Vani有约会]雨天的尾巴(树上差分+线段树合并)

    传送门 要求维护每个点上出现次数最多的颜色. 对于每次修改,我们用树上差分的思想,然后线段树合并统计答案就行了. 注意颜色很大需要离散化. 代码: #include<bits/stdc++.h& ...

  2. 2018.08.28 codeforces600E(dsu on tree)

    传送门 一道烂大街的dsu on tree板题. 感觉挺有趣的^_^ 代码真心简单啊! 就是先处理轻儿子,然后处理重儿子,其中处理轻儿子后需要手动消除影响. 代码: #include<bits/ ...

  3. 2018.08.28 洛谷P3803 【模板】多项式乘法(FFT)

    传送门 fft模板题. 终于学会fft了. 这个方法真是神奇! 经过试验发现手写的complex快得多啊! 代码: #include<iostream> #include<cstdi ...

  4. 2018.08.28 洛谷P4360 [CEOI2004]锯木厂选址(斜率优化dp)

    传送门 一道斜率优化dp入门题. 是这样的没错... 我们用dis[i]表示i到第三个锯木厂的距离,sum[i]表示前i棵树的总重量,w[i]为第i棵树的重量,于是发现如果令第一个锯木厂地址为i,第二 ...

  5. 2018.08.28 洛谷P3345 [ZJOI2015]幻想乡战略游戏(点分树)

    传送门 题目就是要求维护带权重心. 因此破题的关键点自然就是带权重心的性质. 这时发现直接找带权重心是O(n)的,考虑优化方案. 发现点分树的树高是logn级别的,并且对于以u为根的树,带权重心要么就 ...

  6. 2018.08.28 集合堆栈机(模拟+STL)

    描述 中学数学里集合的元素往往是具体的数字,比如A = {1,2,3},B = {}(空集)等等.但是要特别注意,集合的元素也可以是另一个集合,比如说C = {{}},即说明C有且仅有一个元素--空集 ...

  7. 机器学习---用python实现最小二乘线性回归算法并用随机梯度下降法求解 (Machine Learning Least Squares Linear Regression Application SGD)

    在<机器学习---线性回归(Machine Learning Linear Regression)>一文中,我们主要介绍了最小二乘线性回归算法以及简单地介绍了梯度下降法.现在,让我们来实践 ...

  8. 最小二乘法 及 梯度下降法 运行结果对比(Python版)

    上周在实验室里师姐说了这么一个问题,对于线性回归问题,最小二乘法和梯度下降方法所求得的权重值是一致的,对此我颇有不同观点.如果说这两个解决问题的方法的等价性的确可以根据数学公式来证明,但是很明显的这个 ...

  9. 简单线性回归(梯度下降法) python实现

    grad_desc .caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { bord ...

随机推荐

  1. ArduinoYun教程之通过网络为Arduino Yun编程

    ArduinoYun教程之通过网络为Arduino Yun编程 Arduino Yun的软件部分 通过第一章的介绍后读者就明白了Arduino Yun除了是一个类似其他Arduino的单片机之外,它的 ...

  2. 24.python中类的方法

    类中的方法,其实就是类中的函数,可以分为:实例方法,类方法,静态方法.方法和字段一样,也是属于类的属性,所以也具有运行中修改的特效, 但一般不推荐这样做. 我在类的基本语法中,介绍了构造器方法:__i ...

  3. c#浏览器 遇到的一些问题

    禁用弹窗是需要引用一个新的dll,引用方式http://www.itjsxx.com/csharp/IHTMLDocument2_namespace.html, 禁用新的弹窗的方式http://blo ...

  4. 【HDU 3590】 PP and QQ (博弈-Anti-SG游戏,SJ定理,树上删边游戏)

    PP and QQ Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total S ...

  5. BZOJ 3621: 我想那还真是令人高兴啊 计算几何 复数

    https://www.lydsy.com/JudgeOnline/problem.php?id=3621 给定两个三角形,其中一个可以通过以某点为中心旋转并放缩的方式得到另一个,求这个中心 http ...

  6. PHP 依赖注入(DI) 和 控制反转(IoC)

    要想理解 PHP 依赖注入 和 控制反转 两个概念,就必须搞清楚如下的两个问题: DI —— Dependency Injection 依赖注入 IoC —— Inversion of Control ...

  7. jquery智能弹出层,自己主动推断位置

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  8. 在ASP.NET MVC中使用Boostrap实现产品的展示、查询、排序、分页

    在产品展示中,通常涉及产品的展示方式.查询.排序.分页,本篇就在ASP.NET MVC下,使用Boostrap来实现. 源码放在了GitHub: https://github.com/darrenji ...

  9. delphi 取得任意程序的命令行

    program GetCommandLineExDemo; uses Windows; constSystemHandleInformation = 16;ProcessBasicInformatio ...

  10. Occlusion Culling遮挡剔除理解设置和地形优化应用

    这里使用的是unity5.5版本 具体解释网上都有,就不多说了,这里主要说明怎么使用,以及参数设置和实际注意点 在大场景地形的优化上,但也不是随便烘焙就能降低帧率的,必须结合实际情况来考虑,当然还有透 ...