Edit Distance leetcode java
题目:
Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2. (each operation is counted as 1 step.)
You have the following 3 operations permitted on a word:
a) Insert a character
b) Delete a character
c) Replace a character
题解:
处理这道题也是用动态规划。
动态数组dp[word1.length+1][word2.length+1]
dp[i][j]表示从word1前i个字符转换到word2前j个字符最少的步骤数。
假设word1现在遍历到字符x,word2遍历到字符y(word1当前遍历到的长度为i,word2为j)。
以下两种可能性:
1. x==y,那么不用做任何编辑操作,所以dp[i][j] = dp[i-1][j-1]
2. x != y
(1) 在word1插入y, 那么dp[i][j] = dp[i][j-1] + 1
(2) 在word1删除x, 那么dp[i][j] = dp[i-1][j] + 1
(3) 把word1中的x用y来替换,那么dp[i][j] = dp[i-1][j-1] + 1
最少的步骤就是取这三个中的最小值。
最后返回 dp[word1.length+1][word2.length+1] 即可。
代码如下:
1 public static int minDistance(String word1, String word2) {
2 int len1 = word1.length();
3 int len2 = word2.length();
4
5 // len1+1, len2+1, because finally return dp[len1][len2]
6 int[][] dp = new int[len1 + 1][len2 + 1];
7
8 for (int i = 0; i <= len1; i++)
9 dp[i][0] = i;
for (int j = 0; j <= len2; j++)
dp[0][j] = j;
//iterate though, and check last char
for (int i = 1; i <= len1; i++) {
char c1 = word1.charAt(i-1);
for (int j = 1; j <= len2; j++) {
char c2 = word2.charAt(j-1);
//if last two chars equal
if (c1 == c2) {
//update dp value for +1 length
dp[i][j] = dp[i-1][j-1];
} else {
int replace = dp[i-1][j-1] + 1;
int insert = dp[i-1][j] + 1;
int delete = dp[i][j-1] + 1;
int min = Math.min(replace, insert);
min = Math.min(min,delete);
dp[i][j] = min;
}
}
}
return dp[len1][len2];
}
Reference:
http://www.programcreek.com/2013/12/edit-distance-in-java/
http://blog.csdn.net/linhuanmars/article/details/24213795
Edit Distance leetcode java的更多相关文章
- edit distance leetcode
这样的字符转换的dp挺经典的, 若word1[i+1]==word2[j+1] dp[i+1][j+1] = dp[i][j]:否则,dp[i+1][j+1] = dp[i][j] + 1.(替换原则 ...
- Java for LeetCode 072 Edit Distance【HARD】
Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2 ...
- ✡ leetcode 161. One Edit Distance 判断两个字符串是否是一步变换 --------- java
Given two strings S and T, determine if they are both one edit distance apart. 给定两个字符串,判断他们是否是一步变换得到 ...
- LeetCode One Edit Distance
原题链接在这里:https://leetcode.com/problems/one-edit-distance/ Given two strings S and T, determine if the ...
- 【LeetCode】161. One Edit Distance
Difficulty: Medium More:[目录]LeetCode Java实现 Description Given two strings S and T, determine if the ...
- [LeetCode] One Edit Distance 一个编辑距离
Given two strings S and T, determine if they are both one edit distance apart. 这道题是之前那道Edit Distance ...
- [LeetCode] Edit Distance 编辑距离
Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2 ...
- [leetcode]161. One Edit Distance编辑步数为一
Given two strings s and t, determine if they are both one edit distance apart. Note: There are 3 pos ...
- 动态规划小结 - 二维动态规划 - 时间复杂度 O(n*n)的棋盘型,题 [LeetCode] Minimum Path Sum,Unique Paths II,Edit Distance
引言 二维动态规划中最常见的是棋盘型二维动态规划. 即 func(i, j) 往往只和 func(i-1, j-1), func(i-1, j) 以及 func(i, j-1) 有关 这种情况下,时间 ...
随机推荐
- Linux系统的组成
<linux系统7大子系统> a:SCI(system call interface) ————用户程序通过软件中断后,调用系统内核提供的功能,这个在用户空间和内核提供的服务之间的接口称为 ...
- 五校联考R1 Day1T3 平面图planar(递推 矩阵快速幂)
题目链接 我们可以把棱柱拆成有\(n\)条高的矩形,尝试递推. 在计算的过程中,第\(i\)列(\(i\neq n\))只与\(i-1\)列有关,称\(i-1\)列的上面/下面为左上/左下,第\(i\ ...
- Wannafly挑战赛24游记
Wannafly挑战赛24游记 A - 石子游戏 题目大意: A和B两人玩游戏,总共有\(n(n\le10^4)\)堆石子,轮流进行一些操作,不能进行下去的人则输掉这局游戏.操作包含以下两种: 把石子 ...
- 2010-2011 ACM-ICPC, NEERC, Moscow Subregional Contest Problem A. Alien Visit 计算几何
Problem A. Alien Visit 题目连接: http://codeforces.com/gym/100714 Description Witness: "First, I sa ...
- hdu 5773 The All-purpose Zero 线段树 dp
The All-purpose Zero 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5773 Description ?? gets an seq ...
- LPC43xx State Configurable Timer : SCT
- JS删除String里某个字符的方法
关于JS删除String里的字符的方法,一般使用replace()方法.但是这个方法只会删除一次,如果需要将string里的所以字符都删除就要用到正则. 1 2 3 4 var str = " ...
- HDU 1075 What Are You Talking About (strings)
What Are You Talking About Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 102400/204800 K ...
- springcloud 分布式服务跟踪sleuth+zipkin
原文:https://www.jianshu.com/p/6ef0b76b9c26 分布式服务跟踪需求 随着分布式服务越来越多,调用关系越来越复杂,组合接口越来越多,要进行分布式服务跟踪监控的需求也越 ...
- 如何快速分析一款ios软件或需求的大流程,然后在业务层实现,不牵扯到界面?
如何快速分析一款ios软件或需求的大流程,然后在业务层实现,不牵扯到界面?