Edit Distance leetcode java
题目:
Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2. (each operation is counted as 1 step.)
You have the following 3 operations permitted on a word:
a) Insert a character
b) Delete a character
c) Replace a character
题解:
处理这道题也是用动态规划。
动态数组dp[word1.length+1][word2.length+1]
dp[i][j]表示从word1前i个字符转换到word2前j个字符最少的步骤数。
假设word1现在遍历到字符x,word2遍历到字符y(word1当前遍历到的长度为i,word2为j)。
以下两种可能性:
1. x==y,那么不用做任何编辑操作,所以dp[i][j] = dp[i-1][j-1]
2. x != y
(1) 在word1插入y, 那么dp[i][j] = dp[i][j-1] + 1
(2) 在word1删除x, 那么dp[i][j] = dp[i-1][j] + 1
(3) 把word1中的x用y来替换,那么dp[i][j] = dp[i-1][j-1] + 1
最少的步骤就是取这三个中的最小值。
最后返回 dp[word1.length+1][word2.length+1] 即可。
代码如下:
1 public static int minDistance(String word1, String word2) {
2 int len1 = word1.length();
3 int len2 = word2.length();
4
5 // len1+1, len2+1, because finally return dp[len1][len2]
6 int[][] dp = new int[len1 + 1][len2 + 1];
7
8 for (int i = 0; i <= len1; i++)
9 dp[i][0] = i;
for (int j = 0; j <= len2; j++)
dp[0][j] = j;
//iterate though, and check last char
for (int i = 1; i <= len1; i++) {
char c1 = word1.charAt(i-1);
for (int j = 1; j <= len2; j++) {
char c2 = word2.charAt(j-1);
//if last two chars equal
if (c1 == c2) {
//update dp value for +1 length
dp[i][j] = dp[i-1][j-1];
} else {
int replace = dp[i-1][j-1] + 1;
int insert = dp[i-1][j] + 1;
int delete = dp[i][j-1] + 1;
int min = Math.min(replace, insert);
min = Math.min(min,delete);
dp[i][j] = min;
}
}
}
return dp[len1][len2];
}
Reference:
http://www.programcreek.com/2013/12/edit-distance-in-java/
http://blog.csdn.net/linhuanmars/article/details/24213795
Edit Distance leetcode java的更多相关文章
- edit distance leetcode
这样的字符转换的dp挺经典的, 若word1[i+1]==word2[j+1] dp[i+1][j+1] = dp[i][j]:否则,dp[i+1][j+1] = dp[i][j] + 1.(替换原则 ...
- Java for LeetCode 072 Edit Distance【HARD】
Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2 ...
- ✡ leetcode 161. One Edit Distance 判断两个字符串是否是一步变换 --------- java
Given two strings S and T, determine if they are both one edit distance apart. 给定两个字符串,判断他们是否是一步变换得到 ...
- LeetCode One Edit Distance
原题链接在这里:https://leetcode.com/problems/one-edit-distance/ Given two strings S and T, determine if the ...
- 【LeetCode】161. One Edit Distance
Difficulty: Medium More:[目录]LeetCode Java实现 Description Given two strings S and T, determine if the ...
- [LeetCode] One Edit Distance 一个编辑距离
Given two strings S and T, determine if they are both one edit distance apart. 这道题是之前那道Edit Distance ...
- [LeetCode] Edit Distance 编辑距离
Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2 ...
- [leetcode]161. One Edit Distance编辑步数为一
Given two strings s and t, determine if they are both one edit distance apart. Note: There are 3 pos ...
- 动态规划小结 - 二维动态规划 - 时间复杂度 O(n*n)的棋盘型,题 [LeetCode] Minimum Path Sum,Unique Paths II,Edit Distance
引言 二维动态规划中最常见的是棋盘型二维动态规划. 即 func(i, j) 往往只和 func(i-1, j-1), func(i-1, j) 以及 func(i, j-1) 有关 这种情况下,时间 ...
随机推荐
- Tecnomatix Process Designer & Process Simulate用法
1. 删除项目 在AdminConsole->Project Action中,点击Delete project即可.
- 火狐浏览器接口测试工具Poster
- hdu 4432 第37届ACM/ICPC天津现场赛B题
题目大意就是找出n的约数,然后把约数在m进制下展开,各个数位的每一位平方求和,然后按m进制输出. 模拟即可 #include<cstdio> #include<iostream> ...
- mybatis学习笔记(六) -- maven+spring+mybatis从零开始搭建整合详细过程(下)
继续 mybatis学习笔记(五) -- maven+spring+mybatis从零开始搭建整合详细过程(上) 五.使用监听器启动Spring容器 1.修改pom.xml文件,添加Spring-we ...
- BZOJ 3564: [SHOI2014]信号增幅仪 最小圆覆盖
3564: [SHOI2014]信号增幅仪 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=3564 Description 无线网络基站在 ...
- j.u.c系列(02)---线程池ThreadPoolExecutor---tomcat实现策略
写在前面 本文是以同tomcat 7.0.57. jdk版本1.7.0_80为例. 线程池在tomcat中的创建实现为: public abstract class AbstractEndpoint& ...
- FireDAC 下的 Sqlite [2] - 第一个例子
为了方便测试, 我把官方提供的 C:\Users\Public\Documents\Embarcadero\Studio\14.0\Samples\data\FDDemo.sdb 复制了一份到 C:\ ...
- C# .Net 多进程同步 通信 共享内存 内存映射文件 Memory Mapped
节点通信存在两种模型:共享内存(Shared memory)和消息传递(Messages passing). 内存映射文件对于托管世界的开发人员来说似乎很陌生,但它确实已经是很远古的技术了,而且在操作 ...
- Oracle数据库备份还原工具之Expdp/IMPdp
使用EXPDP和IMPDP时应该注意的事项: EXP和IMP是客户端工具程序,它们既可以在客户端使用,也可以在服务端使用. EXPDP和IMPDP是服务端的工具程序,他们只能在ORACLE服务端使用, ...
- “CMD /C”的特殊应用
命令行下似乎有数不尽的秘密,稍微挖掘一下就会有意外惊喜.今天跟各位朋友分享一下“CMD /C”的特殊应用,希望能对大家有所帮助.在cmd的帮助文件里,它是这样介绍/c参数的: “CMD [/C str ...