Traveler Nobita


Time Limit: 2 Seconds      Memory Limit: 65536 KB


One day, Nobita used a time machine and went back to 1000 AD. He found that there are N cities in the kingdom he lived. The cities are numbered from 0 toN - 1. Before
1000 AD., there are no roads between any two cities. The kingdom will build one road between two cities at the beginning of each year starting from 1000 AD. There might be duplicated roads between two cities being built by the kingdom. You can assume that
building a road takes no time.

At the beginning of every year, after the new road is built, Nobita will try to make a schedule to travel around all cities within that year. The travel should both begin at and end at
the capital city - city0. Every time Nobita arrived at a city i, he will spent t1i days in that city, regardless of how many times he had come to the city. Of course he wouldn't need to spend any time in the
capital city (that is to say, t10 is always 0). And t2i hours is required to pass road #i. Note that to pass each road, a passport of that road is required. And the kingdom limits that one
person can only have no more than N - 1 passports of roads each year.

You are given information about the roads built in M years. Please find out the minimum time Nobita needed to complete his traveling schedule.

Input

There are multiple cases. The first line of a test case contains two integers, N (2 ≤ N ≤ 200) and M (1 ≤ M ≤ 10000). The next line contains N integers,
indicating t10 ... t1n - 1. (0 ≤ t1i ≤ 50) The next M lines, the ith (0 ≤ i < M) line of this section contains three integers, uivit2i,
(0 ≤ uivi < N; 0 ≤ t2i ≤ 5000), indicating that in year 1000 + i AD., a road will be built between city ui and city vit1i and t2i have
been described above.

Output

For each case, you should output M lines. For the ith line, if Nobita can make a schedule in year 1000 + i, output the minimal days he can finish
that schedule, rounded to two decimal digits. Otherwise output -1. There should be a blank line after each case.

Sample Input

5 6
0 5 2 5 4
0 1 1
0 2 2
0 3 5
3 4 2
2 4 4
1 2 1

Sample Output

-1
-1
-1
21.83
19.00
19.00

题意:有n个城市。每年修一条路,总共修m年。注意是从1000年開始的。Nobita想要每年走完一次n个城市,每次从0号出发,最后再回到0号,在每一个城市待t1天。从一个城市到还有一个城市要t2小时,注意这里的时间单位不统一。推断年份时,也要注意闰年和平年

思路:kruscal就可以找到最短的路线。对于u,v两个点之间的边权,存的是在u,v两个城市呆的时间和行走路程所用时间。在0号不须要花费时间。

kruscal过程中有一个优化。即假设两个点已经是一个集合中的,那么连接这两点的边就能够删除。由于之前已经有花费更少的边了,所以这条边。就是没用的。
#include <iostream>
#include <stdio.h>
#include <string>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <set>
#include <queue>
#include <stack>
#include <vector>
#define N 10009
using namespace std; int n,m;
int num;
int a[N];
int fa[N]; struct node
{
int u,v,len;
bool operator<(const node &a)const
{
return len<a.len;
}
};
vector<node>ed; int findfa(int x)
{
int r = x, t; while(r!=fa[r])
r=fa[r]; // for(;fa[r]>=0;r=fa[r]); while(x!=r)
{
t = fa[x];
fa[x] = r;
x = t;
} return r;
} int check(int x)
{
if(x%400==0 || (x%4==0&&x%100))
return 1; return 0;
} void add(int u,int v,int w)
{
node e={u,v,(a[u]+a[v])*24+w*2};
ed.push_back(e);
} void uniontwo(int a,int b)
{
int aa=findfa(a);
int bb=findfa(b);
int tmp=fa[aa]+fa[bb];
if(fa[aa]>fa[bb])
{
fa[aa]=bb;
fa[bb]=tmp;
}
else
{
fa[bb]=aa;
fa[aa]=tmp;
}
} int kruscal()
{
for(int i=1;i<=n;i++)fa[i]=i; sort(ed.begin(),ed.end());
int ans=0,cnt=0; // for(vector<node>::iterator it=ed.begin();it!=ed.end();it++)
// {
// cout<<it->u<<" "<<it->v<<" "<<it->len<<endl;
// } for(vector<node>::iterator it=ed.begin();it<ed.end();)
{
int u=it->u;
int v=it->v;
int l=it->len;
int fu=findfa(u);
int fv=findfa(v); if( findfa(u)!=findfa(v) )
{
ans+=l;
cnt++;
it++;
if(fv>fu)fa[fv]=fu;
else
fa[fu]=fv;
//uniontwo(u,v);
}
else
ed.erase(it);//已经有更小的边用于连接,此边即没什么用。可删除
}
//cout<<"cnt="<<cnt<<endl; if(cnt<n-1) return -1;
return ans; } int main()
{
while(~scanf("%d%d",&n,&m))
{
num=0;
for(int i=0;i<n;i++)
scanf("%d",&a[i]); ed.clear();
int u,v,w; for(int i=0;i<m;i++)
{
scanf("%d%d%d",&u,&v,&w);
add(u,v,w); if(i<n-2)
{
puts("-1");
continue;
} int x=kruscal();
//cout<<"********"<<endl; //cout<<"x="<<x<<endl;
if(x==-1)
{
puts("-1");
continue;
}
int yy;
if(check(1000+i)) yy=366;
else yy=365; if(yy*24<x)
puts("-1");
else
printf("%.2f\n",x/24.0); }
puts(""); } return 0;
}


ZOJ 3456 Traveler Nobita 最小生成树的更多相关文章

  1. Traveler Nobita (zoj 3456 最小生成树)

    Traveler Nobita Time Limit: 2 Seconds      Memory Limit: 65536 KB One day, Nobita used a time machin ...

  2. ZOJ - 3204 Connect them 最小生成树

    Connect them ZOJ - 3204 You have n computers numbered from 1 to n and you want to connect them to ma ...

  3. ZOJ 1586 QS Network (最小生成树)

    QS Network Time Limit:2000MS     Memory Limit:65536KB     64bit IO Format:%lld & %llu Submit Sta ...

  4. POJ 1861 &amp; ZOJ 1542 Network(最小生成树之Krusal)

    题目链接: PKU:http://poj.org/problem?id=1861 ZJU:http://acm.zju.edu.cn/onlinejudge/showProblem.do?proble ...

  5. ZOJ 1542 POJ 1861 Network 网络 最小生成树,求最长边,Kruskal算法

    题目连接:problemId=542" target="_blank">ZOJ 1542 POJ 1861 Network 网络 Network Time Limi ...

  6. ZOJ 1203 Swordfish 旗鱼 最小生成树,Kruskal算法

    主题链接:problemId=203" target="_blank">ZOJ 1203 Swordfish 旗鱼 Swordfish Time Limit: 2 ...

  7. ZOJ 1584:Sunny Cup 2003 - Preliminary Round(最小生成树&amp;&amp;prim)

    Sunny Cup 2003 - Preliminary Round April 20th, 12:00 - 17:00 Problem E: QS Network In the planet w-5 ...

  8. zoj 3204 最小生成树,输出字典序最小的解

    注意排序即可 #include<cstdio> #include<iostream> #include<algorithm> #include<cstring ...

  9. zoj 2966 Build The Electric System 最小生成树

    Escape Time II Time Limit: 20 Sec  Memory Limit: 256 MB 题目连接 http://acm.zju.edu.cn/onlinejudge/showP ...

随机推荐

  1. STM32 System and Timer Clock Configurations

    STM32 System and Timer Clock Configurations I've started writing some software to drive a series of  ...

  2. 收集的MySQL的面试题分享给大家

    1.怎样登陆mysql数据库 mysql -u username -p 2.怎样开启/关闭mysql服务 service mysql start/stop 3.查看mysql的状态 service m ...

  3. CefSharp 在同一窗口打开链接的方法

    摘要 在winform中使用cefsharp的时候,我们在浏览网页的时候,想在同一个窗口打开链接,而不是创建新的窗口.可以通过下面的方法实现. 解决方案 CefSharp 中控制弹窗的接口是 ILif ...

  4. ASP.NET Web API基于OData的增删改查,以及处理实体间关系

    本篇体验实现ASP.NET Web API基于OData的增删改查,以及处理实体间的关系. 首先是比较典型的一对多关系,Supplier和Product. public class Product { ...

  5. iOS 实现复选框 checkbox

    -(void)checkboxClick:(UIButton *)btn{    btn.selected = !btn.selected;} - (void)viewDidLoad {UIButto ...

  6. NSString 和 NSData 转换

    NSString 转换成NSData 对象 NSData* xmlData =[@"testdata" dataUsingEncoding:NSUTF8StringEncoding ...

  7. JS 判断 undefined 类型

    typeof 返回的是字符串,有六种可能:"number"."string"."boolean"."object".&q ...

  8. 【tensorflow】1.安装Tensorflow开发环境,安装Python 的IDE--PyCharm

    ================================================== 安装Tensorflow开发环境,安装Python 的IDE--PyCharm 1.PyCharm ...

  9. netty 自定义通讯协议

    Netty中,通讯的双方建立连接后,会把数据按照ByteBuf的方式进行传输,例如http协议中,就是通过HttpRequestDecoder对ByteBuf数据流进行处理,转换成http的对象.基于 ...

  10. Oracle中删除用户下所有对象的多种方法

      Oracle删除用户下所有对象的方法未必人人都会,下面就为您介绍两种常用的Oracle删除用户下所有对象的方法,希望对您学习Oracle删除用户方面能有所帮助. 方法1: drop user XX ...