C Looooops
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 19536   Accepted: 5204

Description

A Compiler Mystery: We are given a C-language style for loop of type

for (variable = A; variable != B; variable += C)

  statement;

I.e., a loop which starts by setting variable to value A and while variable is not equal to B, repeats statement followed by increasing the variable by C. We want to know how many times does the statement get executed for particular values of A, B and C, assuming
that all arithmetics is calculated in a k-bit unsigned integer type (with values 0 <= x < 2k) modulo 2k


Input

The input consists of several instances. Each instance is described by a single line with four integers A, B, C, k separated by a single space. The integer k (1 <= k <= 32) is the number of bits of the control variable of the loop and A, B, C (0 <= A, B, C
< 2k) are the parameters of the loop. 



The input is finished by a line containing four zeros. 

Output

The output consists of several lines corresponding to the instances on the input. The i-th line contains either the number of executions of the statement in the i-th instance (a single integer number) or the word FOREVER if the loop does not terminate. 

Sample Input

3 3 2 16
3 7 2 16
7 3 2 16
3 4 2 16
0 0 0 0

Sample Output

0
2
32766
FOREVER

题意是问在

for (variable = A; variable != B; variable += C)

这样的情况下,循环多少次。

当中全部的数要mod 2的k次方。所以方程就是(A+C*x)%(2^k)=B,变换一下就是-C*x+(2^k)*y=A-B。解这个方程的最小正数x就可以。

又是扩展欧几里德。



代码:

#include <iostream>
#include <string>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std; long long yue; void ex_gcd(long long a,long long b, long long &xx,long long &yy)
{
if(b==0)
{
xx=1;
yy=0;
yue=a;
}
else
{
ex_gcd(b,a%b,xx,yy); long long t=xx;
xx=yy;
yy=t-(a/b)*yy;
}
} int main()
{
long long A,B,C,k,k2,xx,yy; while(scanf_s("%lld%lld%lld%lld",&A,&B,&C,&k))
{
if(!A&&!B&&!C&&!k)
break; k2=(1LL<<k);
ex_gcd(-C,k2,xx,yy); if((A-B)%yue)
{
cout<<"FOREVER"<<endl;
}
else
{
xx=xx*((A-B)/yue);
long long r=k2/yue;
if(r<0)
xx=(xx%r-r)%r;
else
xx=(xx%r+r)%r;
printf("%lld\n",xx);
}
}
return 0;
}

POJ 2115:C Looooops的更多相关文章

  1. 【poj 2115】C Looooops(数论--拓展欧几里德 求解同余方程 模版题)

    题意:有一个在k位无符号整数下的模型:for (variable = A; variable != B; variable += C)  statement; 问循环的次数,若"永不停息&q ...

  2. 【题解】POJ 2115 C Looooops (Exgcd)

    POJ 2115:http://poj.org/problem?id=2115 思路 设循环T次 则要满足A≡(B+CT)(mod 2k) 可得 A=B+CT+m*2k 移项得C*T+2k*m=B-A ...

  3. POJ 2115 C Looooops(扩展欧几里得应用)

    题目地址:POJ 2115 水题. . 公式非常好推.最直接的公式就是a+n*c==b+m*2^k.然后能够变形为模线性方程的样子,就是 n*c+m*2^k==b-a.即求n*c==(b-a)mod( ...

  4. POJ 3321:Apple Tree + HDU 3887:Counting Offspring(DFS序+树状数组)

    http://poj.org/problem?id=3321 http://acm.hdu.edu.cn/showproblem.php?pid=3887 POJ 3321: 题意:给出一棵根节点为1 ...

  5. POJ 3252:Round Numbers

    POJ 3252:Round Numbers Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 10099 Accepted: 36 ...

  6. POJ 2115 C Looooops(模线性方程)

    http://poj.org/problem?id=2115 题意: 给你一个变量,变量初始值a,终止值b,每循环一遍加c,问一共循环几遍终止,结果mod2^k.如果无法终止则输出FOREVER. 思 ...

  7. poj 2115 C Looooops——exgcd模板

    题目:http://poj.org/problem?id=2115 exgcd裸题.注意最后各种%b.注意打出正确的exgcd板子.就是别忘了/=g. #include<iostream> ...

  8. poj 2115 Looooops

    C Looooops Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 23637   Accepted: 6528 Descr ...

  9. Poj 2115 C Looooops(exgcd变式)

    C Looooops Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 22704 Accepted: 6251 Descripti ...

随机推荐

  1. iOS开发技巧 - 使用UISegmentedControl来对信息进行分组

    (Swift) import UIKit class ViewController: UIViewController { var segmentedControl:UISegmentedContro ...

  2. javascript获取和设置URL中的参数

    勘误版 function getQuery(key, url) { url = url || window.location.href; if (url.indexOf('#') !== -1) ur ...

  3. Qt 拖动窗口位置

    Qt 版本 4.8.1 ,主要是为了解决 embeded Qt 下,子窗口的拖动问题. void MyInputPanel::mousePressEvent(QMouseEvent *mouseEve ...

  4. 腾讯云ubuntu搭建tomcat

    转载请注明原文地址:http://www.cnblogs.com/ygj0930/p/6377945.html 一:工具准备 Putty+Xftp5,见上一篇博文:http://www.cnblogs ...

  5. Linux安装nginx并设置https(openssl

    一.安装依赖包 1.$sudo apt-get install openssl    或者$sudo apt-get install libssl-dev 2.$sudo apt-get instal ...

  6. oracle中解决角色PLUSTRACE不存在

    在sqlplus中用autotrace查看执计划时出现如下错误提示: SYS@CDB$ROOT> conn scott/tiger@pdborcl Connected.会话已更改. SCOTT@ ...

  7. jackson 中JsonFormat date类型字段的使用

    为了便于date类型字段的序列化和反序列化,需要在数据结构的date类型的字段上用JsonFormat注解进行注解具体格式如下 @JsonFormat(pattern = "yyyy-MM- ...

  8. PCL中的OpenNI点云获取框架(OpenNI Grabber Framework in PCL)

    从PCL 1.0开始,PCL(三维点云处理库Point Cloud Library)提供了一个通用采集接口,这样可以方便地连接到不同的设备及其驱动.文件格式和其他数据源.PCL集成的第一个数据获取驱动 ...

  9. Excel分数、小数、身份证的录入

    身份证输入: 方法1:将单元格格式设置为文本,在输入数据 方法2:在输入之前输入英文状态下的单引号在输入数据 分数输入: 办法1:0[空格]数字/数字,如:0 1/3 办法2:将需要输入数据的区域设置 ...

  10. python模块之HTMLParser抓页面上的所有URL链接

    # -*- coding: utf-8 -*- #python 27 #xiaodeng #python模块之HTMLParser抓页面上的所有URL链接 import urllib #MyParse ...