https://blog.csdn.net/m0_37786651/article/details/61614865

从感知器谈起

对于典型的二分类问题,线性分类器的目的就是找一个超平面把正负两类分开。对于这个超平面,我们可以用下面的式子来表示,

 
ωTx+b=0ωTx+b=0

感知器是最简单的一种线性分类器。用f(x)表示分类函数,感知器可以如下来表示。

 
f(x)=sign(ωTx+b)f(x)=sign(ωTx+b)

感知器相当于一个阶跃函数,如下图所示,在0处有一个突变。 

损失函数是分类器优化的目标函数,可以用来衡量分类错误的程度,损失函数值越小,代表分类器性能越好。感知器的损失函数为误分类点的函数间隔之和,函数间隔可以理解为样本与分类超平面的距离。误分类点距离分类超平面越远,则损失函数值越大。只有误分类的点会影响损失函数的值。

 
L=−y(wTx+b)L=−y(wTx+b)

从感知器到logistic回归

感知器模型简单直观,但问题在于这个模型不够光滑,比如如果对于一个新的样本点我们计算出ω^T x+b=0.001,只比0大了一点点就会被分为正样本。同时这个点在0处有一个阶跃,导致这一点不连续,在数学上处理起来不方便。 
那有没有办法让 ωTx+bωTx+b 到y的映射变得更加光滑呢,人们发现logistic函数有着这样的特性,输入范围是−∞→+∞,而值域光滑地分布于0和1之间。于是就有了logistic回归,正样本点分类的超平面距离越远,ωTx+bωTx+b 越大,而logistic函数值则越接近于1。负样本点分类的超平面距离越远,ωTx+bωTx+b 越小,而logistic函数值则越接近于0。 

Logistic回归的损失函数为logistic损失函数,当分类错误时,函数间隔越大,则损失函数值越大。当分类正确时,样本点距离超平面越远,则损失函数值越小。所有的样本点分布情况都会影响损失函数最后的值。

 
log(1+exp(−y(wTx+b)))log⁡(1+exp(−y(wTx+b)))

从感知器到SVM

在感知器分类选分类超平面时,我们可以选择很多个平面作为超平面,而选择哪个超平面最好呢,我们可以选择距离正样本和负样本最远的超平面作为分类超平面,基于这种想法人们提出了SVM算法。SVM的损失函数为合页函数,当分类错误时,函数间隔越大,则损失函数值越大。当分类正确且样本点距离超平面一定距离以上,则损失函数值为0。误分类的点和与分类超平面距离较近的点会影响损失函数的值。

 
[1−y(wTx+b)]+[1−y(wTx+b)]+

感知器、logistic与SVM

三者都是线性分类器,而logistic和svm是由感知器发展改善而来的。区别在于三者的损失函数不同,后两者的损失函数的目的都是增加对分类影响较大的数据点的权重,SVM的处理方法是只考虑support vectors,也就是和分类最相关的少数点,去学习分类器。而逻辑回归通过非线性映射,大大减小了离分类平面较远的点的权重,相对提升了与分类最相关的数据点的权重。下图中红色的曲线代表logistic回归的损失函数,绿色的线代表svm的损失函数。 


参考 
[1] 统计学习方法,李航 
[2] http://blog.csdn.net/hel_wor/article/details/50539967 
[3] https://www.zhihu.com/question/21704547

感知器、logistic与svm 区别与联系的更多相关文章

  1. 机器学习之感知器和线性回归、逻辑回归以及SVM的相互对比

    线性回归是回归模型 感知器.逻辑回归以及SVM是分类模型 线性回归:f(x)=wx+b 感知器:f(x)=sign(wx+b)其中sign是个符号函数,若wx+b>=0取+1,若wx+b< ...

  2. 感知器、逻辑回归和SVM的求解

    这篇文章将介绍感知器.逻辑回归的求解和SVM的部分求解,包含部分的证明.本文章涉及的一些基础知识,已经在<梯度下降.牛顿法和拉格朗日对偶性>中指出,而这里要解决的问题,来自<从感知器 ...

  3. 从感知器到SVM

    这篇文章主要是分析感知器和SVM处理分类问题的原理,不涉及求解 感知器: 感知器要解决的是这样的一个二分类问题:给定了一个线性可分的数据集,我们需要找到一个超平面,将该数据集分开.这个超平面的描述如下 ...

  4. 第三集 欠拟合与过拟合的概念、局部加权回归、logistic回归、感知器算法

    课程大纲 欠拟合的概念(非正式):数据中某些非常明显的模式没有成功的被拟合出来.如图所示,更适合这组数据的应该是而不是一条直线. 过拟合的概念(非正式):算法拟合出的结果仅仅反映了所给的特定数据的特质 ...

  5. 【2008nmj】Logistic回归二元分类感知器算法.docx

    给你一堆样本数据(xi,yi),并标上标签[0,1],让你建立模型(分类感知器二元),对于新给的测试数据进行分类. 要将两种数据分开,这是一个分类问题,建立数学模型,(x,y,z),z指示[0,1], ...

  6. 机器学习 —— 基础整理(六)线性判别函数:感知器、松弛算法、Ho-Kashyap算法

    这篇总结继续复习分类问题.本文简单整理了以下内容: (一)线性判别函数与广义线性判别函数 (二)感知器 (三)松弛算法 (四)Ho-Kashyap算法 闲话:本篇是本系列[机器学习基础整理]在time ...

  7. tensorflow学习笔记——自编码器及多层感知器

    1,自编码器简介 传统机器学习任务很大程度上依赖于好的特征工程,比如对数值型,日期时间型,种类型等特征的提取.特征工程往往是非常耗时耗力的,在图像,语音和视频中提取到有效的特征就更难了,工程师必须在这 ...

  8. 深度学习炼丹术 —— Taoye不讲码德,又水文了,居然写感知器这么简单的内容

    手撕机器学习系列文章就暂时更新到此吧,目前已经完成了支持向量机SVM.决策树.KNN.贝叶斯.线性回归.Logistic回归,其他算法还请允许Taoye在这里先赊个账,后期有机会有时间再给大家补上. ...

  9. Stanford大学机器学习公开课(三):局部加权回归、最小二乘的概率解释、逻辑回归、感知器算法

    (一)局部加权回归 通常情况下的线性拟合不能很好地预测所有的值,因为它容易导致欠拟合(under fitting).如下图的左图.而多项式拟合能拟合所有数据,但是在预测新样本的时候又会变得很糟糕,因为 ...

随机推荐

  1. curl 7.52.1 for Windows

    curl是利用URL语法在命令行方式下工作的开源文件传输工具.它被广泛应用在Unix.多种Linux发行版中,并且有DOS和Win32.Win64下的移植版本. 这个工具对于在运维.持续集成和批处理场 ...

  2. 计算两个集合的差集——第六期 Power8 算法挑战赛

    第六期Power8大赛 1.1 比赛题目 题目: 计算两个集合的差集: 详细说明: 分别有集合A和B两个大数集合,求解集合A与B的差集(A中有,但B中无的元素),并将结果保存在集合C中,要求集合C中的 ...

  3. Linux 中的 grep 命令

    一,grep命令有什么用 个人觉得grep命令就是一个对文本或输出进行匹配并控制输出的一个工具,看一下下面的参数,部分翻译了,有不对的地方,还请指正: grep --help 匹配模式选择: -E,  ...

  4. Rubin-Miller与Pollard Rho

    两个没什么卵用的算法. 只放一下模板: BZOJ3667 //BZOJ 3667 //by Cydiater //2017.2.20 #include <iostream> #includ ...

  5. POJ 1222 EXTENDED LIGHTS OUT(高斯消元)题解

    题意:5*6的格子,你翻一个地方,那么这个地方和上下左右的格子都会翻面,要求把所有为1的格子翻成0,输出一个5*6的矩阵,把要翻的赋值1,不翻的0,每个格子只翻1次 思路:poj 1222 高斯消元详 ...

  6. UVa 820 因特网带宽(最大流)

    https://vjudge.net/problem/UVA-820 题意: 给出所有计算机之间的路径和路径容量后求出两个给定结点之间的流通总容量. 思路: 裸的最大流问题.注意有个比较坑的地方,最后 ...

  7. python分享题目

    目前的分享题目:1 python在云计算虚拟教室领域的应用 2 python与虚拟货币(华三工程师) 3 python在移动游戏的实践(爪子) 4 python互联网敏捷运维实践(蓝雪) 5 pyth ...

  8. hdu 6020 MG loves apple 恶心模拟

    题目链接:点击传送 MG loves apple Time Limit: 3000/1500 MS (Java/Others)    Memory Limit: 262144/262144 K (Ja ...

  9. python 数据交换

    例1 def change(data): data[],data[]=data[],data[] print('函数内交换位置后:') ): print('data[%d]=%3d' %(i,data ...

  10. Could not find a package configuration file provided by 'ecl_threads' ,.................couldn't find required component 'ecl_threads'

    sudo apt-get install ros-kinetic-ecl-threads