题目来源: 福州大学 OJ
基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题
 收藏
 关注
子序列的定义:对于一个序列a=a[1],a[2],......a[n]。则非空序列a'=a[p1],a[p2]......a[pm]为a的一个子序列,其中1<=p1<p2<.....<pm<=n。
例如4,14,2,3和14,1,2,3都为4,13,14,1,2,3的子序列。对于给出序列a,有些子序列可能是相同的,这里只算做1个,请输出a的不同子序列的数量。由于答案比较大,输出Mod 10^9 + 7的结果即可。
 
Input
第1行:一个数N,表示序列的长度(1 <= N <= 100000)
第2 - N + 1行:序列中的元素(1 <= a[i] <= 100000)
Output
输出a的不同子序列的数量Mod 10^9 + 7。
Input示例
4
1
2
3
2
Output示例
13

dp[i] 代表以v[i]为尾的不同子序列个数
当v[i]没出现过,那么dp[i] = dp[i-1}*2 + 1;
// 前面的可构成序列的个数 *(2 往尾部添加与否) +(1 这个数单独作为子序列)
当v[i]出现过, 那么dp[i] = dp[i-1]*2 - dp[pos[v[i]]-1];
// 这个数 前面出现过 那么排除之前以这个数字为尾的所有情况 即(dp[pos[v[i]]-1]-1),然后重新算上dp[i-1]*2+1 1和1抵消就是上面的式子了
#include <bits/stdc++.h>
using namespace std; typedef long long ll;
const int N = +;
const int mod = 1e9+;
ll v[N],dp[N];
int n, pos[N]; int main ()
{
scanf("%d",&n);
for(int i=;i<=n;i++)
scanf("%lld", &v[i]);
for(int i=;i<=n;i++) {
if(pos[v[i]]==) {
dp[i] = dp[i-]* + ;
dp[i] %= mod;
}else {
dp[i] = (dp[i-]* -dp[pos[v[i]]-]);
dp[i] = (dp[i]+mod)%mod;
}
pos[v[i]]=i;
}
cout << dp[n]<<endl;
return ;
}
参考资料:https://www.cnblogs.com/Roni-i/p/9003459.html

51nod 1202 子序列个数的更多相关文章

  1. 51NOD 1202 子序列个数 DP

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1202&judgeId=225600 这题看起来挺复杂,但是真正的 ...

  2. 1202 子序列个数(DP)

    1202 子序列个数 题目来源: 福州大学 OJ 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题 子序列的定义:对于一个序列a=a[1],a[2],......a[ ...

  3. 51nod 1202 不同子序列个数 [计数DP]

    1202 子序列个数 题目来源: 福州大学 OJ 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题 收藏 关注 子序列的定义:对于一个序列a=a[1],a[2],.. ...

  4. 51nod 1202 不同子序列个数(计数DP)

    1202 子序列个数 基准时间限制:1 秒 空间限制:131072 KB 分值: 40      子序列的定义:对于一个序列a=a[1],a[2],......a[n].则非空序列a'=a[p1],a ...

  5. 51nod 1202 线性dp

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1202 1202 子序列个数 题目来源: 福州大学 OJ 基准时间限制:1 ...

  6. 51nod1202 子序列个数

    看到a[i]<=100000觉得应该从这个方面搞.如果a[x]没出现过,f[x]=f[x-1]*2;否则f[x]=f[x-1]*2-f[pos[a[x]]-1];ans=f[n]-1,然后WA了 ...

  7. fzuoj Problem 2129 子序列个数

    http://acm.fzu.edu.cn/problem.php?pid=2129 Problem 2129 子序列个数 Accept: 162    Submit: 491Time Limit: ...

  8. FZU 2129 子序列个数 (递推dp)

    题目链接:http://acm.fzu.edu.cn/problem.php?pid=2129 dp[i]表示前i个数的子序列个数 当a[i]在i以前出现过,dp[i] = dp[i - 1]*2 - ...

  9. 子序列个数(fzu2129)

    子序列个数 Time Limit:2000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit Status ...

随机推荐

  1. kubernetes实战(十四):k8s持久化部署gitlab集成openLDAP登录

    1.基本概念 使用k8s安装gitlab-ce,采用GlusterFS实现持久化(注意PG使用的是NFS存储,使用动态存储重启postgresql的pod后无法成功启动pg,待解决),并集成了open ...

  2. __getattr__,settr

    __getattr__  如果属性查找在实例以及对应的类中(通过__dict__)失败, 那么会调用到类的__getattr__函数, 如果没有定义这个函数,那么抛出AttributeError异常. ...

  3. No message body writer has been found for class com.alibaba.fastjson.JSONObject, ContentType: */*

    1:当使用 cxf 发布服务时,要求返回值类型为xml,或者json等 @Path("/searchProductByText") @GET @Produces({"ap ...

  4. (转)Elasticsearch查询规则------match和term

    es种有两种查询模式,一种是像传递URL参数一样去传递查询语句,被称为简单搜索或查询字符串(query string)搜索,比如 GET /megacorp/employee/_search //查询 ...

  5. Bus System(Flody)

    http://acm.hdu.edu.cn/showproblem.php?pid=1690 坑爹的题,必须用__int64 %I64d(以前没用过) 因为这题的数据特别大,所以用-1 #includ ...

  6. HTML <input> 标签的 name 属性

    定义和用法 name 属性规定 input 元素的名称. name 属性用于对提交到服务器后的表单数据进行标识,或者在客户端通过 JavaScript 引用表单数据. 注释:只有设置了 name 属性 ...

  7. notification 是同步的

    所有notification的观察者执行之后,post notification的函数才会往下执行.

  8. git 下载单个文件 已经添加多个远程服务器

    175down vote It is possible to do (in the deployed repository) git fetch followed by git checkout or ...

  9. soft nofile

    原创文章,转载请注明出处:http://jameswxx.iteye.com/blog/2096461 写这个文章是为了以正视听,网上的文章人云亦云到简直令人发指.到底最大文件数被什么限制了?too ...

  10. docker命令及操作

    docker pull 镜像名字 dockers images docker image ls docker image rm 镜像名/镜像ID docker ps docker ps -a dock ...