sql逻辑查询语句的执行顺序
SELECT语句关键字的定义顺序
SELECT DISTINCT <select_list>
FROM <left_table>
<join_type> JOIN <right_table>
ON <join_condition>
WHERE <where_condition>
GROUP BY <group_by_list>
HAVING <having_condition>
ORDER BY <order_by_condition>
LIMIT <limit_number>
SELECT语句关键字的执行顺序
SELECT
DISTINCT <select_list>
FROM <left_table>
<join_type> JOIN <right_table>
ON <join_condition>
WHERE <where_condition>
GROUP BY <group_by_list>
HAVING <having_condition>
ORDER BY <order_by_condition>
LIMIT <limit_number>
准备表和数据
1,新建一个测试数据库TestDB
create database TestDB;
2,创建测试表table1和table2;
CREATE TABLE table1
(
customer_id VARCHAR(10) NOT NULL,
city VARCHAR(10) NOT NULL,
PRIMARY KEY(customer_id)
)ENGINE=INNODB DEFAULT CHARSET=UTF8; CREATE TABLE table2
(
order_id INT NOT NULL auto_increment,
customer_id VARCHAR(10),
PRIMARY KEY(order_id)
)ENGINE=INNODB DEFAULT CHARSET=UTF8;
3,插入测试数据;
INSERT INTO table1(customer_id,city) VALUES('163','hangzhou');
INSERT INTO table1(customer_id,city) VALUES('9you','shanghai');
INSERT INTO table1(customer_id,city) VALUES('tx','hangzhou');
INSERT INTO table1(customer_id,city) VALUES('baidu','hangzhou');
INSERT INTO table2(customer_id) VALUES('163');
INSERT INTO table2(customer_id) VALUES('163');
INSERT INTO table2(customer_id) VALUES('9you');
INSERT INTO table2(customer_id) VALUES('9you');
INSERT INTO table2(customer_id) VALUES('9you');
INSERT INTO table2(customer_id) VALUES('tx');
INSERT INTO table2(customer_id) VALUES(NULL);
4,查看表
mysql> select * from table1;
+-------------+----------+
| customer_id | city |
+-------------+----------+
| 163 | hangzhou |
| 9you | shanghai |
| baidu | hangzhou |
| tx | hangzhou |
+-------------+----------+
rows in set (0.00 sec) mysql> select * from table2;
+----------+-------------+
| order_id | customer_id |
+----------+-------------+
| 1 | 163 |
| 2 | 163 |
| 3 | 9you |
| 4 | 9you |
| 5 | 9you |
| 6 | tx |
| 7 | NULL |
+----------+-------------+
rows in set (0.00 sec)
准备SQL逻辑查询测试语句
mysql> desc table1;
+-------------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------------+-------------+------+-----+---------+-------+
| customer_id | varchar(10) | NO | PRI | NULL | |
| city | varchar(10) | NO | | NULL | |
+-------------+-------------+------+-----+---------+-------+
2 rows in set (0.06 sec) mysql> desc table2;
+-------------+-------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+-------------+-------------+------+-----+---------+----------------+
| order_id | int(11) | NO | PRI | NULL | auto_increment |
| customer_id | varchar(10) | YES | | NULL | |
+-------------+-------------+------+-----+---------+----------------+
2 rows in set (0.01 sec)
执行顺序分析
在这些SQL语句的执行过程中,都会产生一个虚拟表,用来保存SQL语句的执行结果(这是重点),我现在就来跟踪这个虚拟表的变化,得到最终的查询结果的过程,来分析整个SQL逻辑查询的执行顺序和过程。
执行FROM语句
第一步,执行FROM语句。我们首先需要知道最开始从哪个表开始的,这就是FROM告诉我们的。现在有了<left_table>和<right_table>两个表,我们到底从哪个表开始,还是从两个表进行某种联系以后再开始呢?它们之间如何产生联系呢?——笛卡尔积
关于什么是笛卡尔积,请自行Google补脑。经过FROM语句对两个表执行笛卡尔积,会得到一个虚拟表,暂且叫VT1(vitual table 1),内容如下:
+-------------+----------+----------+-------------+
| customer_id | city | order_id | customer_id |
+-------------+----------+----------+-------------+
| 163 | hangzhou | 1 | 163 |
| 9you | shanghai | 1 | 163 |
| baidu | hangzhou | 1 | 163 |
| tx | hangzhou | 1 | 163 |
| 163 | hangzhou | 2 | 163 |
| 9you | shanghai | 2 | 163 |
| baidu | hangzhou | 2 | 163 |
| tx | hangzhou | 2 | 163 |
| 163 | hangzhou | 3 | 9you |
| 9you | shanghai | 3 | 9you |
| baidu | hangzhou | 3 | 9you |
| tx | hangzhou | 3 | 9you |
| 163 | hangzhou | 4 | 9you |
| 9you | shanghai | 4 | 9you |
| baidu | hangzhou | 4 | 9you |
| tx | hangzhou | 4 | 9you |
| 163 | hangzhou | 5 | 9you |
| 9you | shanghai | 5 | 9you |
| baidu | hangzhou | 5 | 9you |
| tx | hangzhou | 5 | 9you |
| 163 | hangzhou | 6 | tx |
| 9you | shanghai | 6 | tx |
| baidu | hangzhou | 6 | tx |
| tx | hangzhou | 6 | tx |
| 163 | hangzhou | 7 | NULL |
| 9you | shanghai | 7 | NULL |
| baidu | hangzhou | 7 | NULL |
| tx | hangzhou | 7 | NULL |
+-------------+----------+----------+-------------+
总共有28(table1的记录条数 * table2的记录条数)条记录。这就是VT1的结果,接下来的操作就在VT1的基础上进行。
执行ON过滤
执行完笛卡尔积以后,接着就进行ON a.customer_id = b.customer_id条件过滤,根据ON中指定的条件,去掉那些不符合条件的数据,得到VT2表,内容如下:
+-------------+----------+----------+-------------+
| customer_id | city | order_id | customer_id |
+-------------+----------+----------+-------------+
| 163 | hangzhou | 1 | 163 |
| 163 | hangzhou | 2 | 163 |
| 9you | shanghai | 3 | 9you |
| 9you | shanghai | 4 | 9you |
| 9you | shanghai | 5 | 9you |
| tx | hangzhou | 6 | tx |
+-------------+----------+----------+-------------+
VT2就是经过ON条件筛选以后得到的有用数据,而接下来的操作将在VT2的基础上继续进行。
添加外部行
这一步只有在连接类型为OUTER JOIN时才发生,如LEFT OUTER JOIN、RIGHT OUTER JOIN和FULL OUTER JOIN。在大多数的时候,我们都是会省略掉OUTER关键字的,但OUTER表示的就是外部行的概念。
LEFT OUTER JOIN把左表记为保留表,得到的结果为:
+-------------+----------+----------+-------------+
| customer_id | city | order_id | customer_id |
+-------------+----------+----------+-------------+
| 163 | hangzhou | 1 | 163 |
| 163 | hangzhou | 2 | 163 |
| 9you | shanghai | 3 | 9you |
| 9you | shanghai | 4 | 9you |
| 9you | shanghai | 5 | 9you |
| tx | hangzhou | 6 | tx |
| baidu | hangzhou | NULL | NULL |
+-------------+----------+----------+-------------+
RIGHT OUTER JOIN把右表记为保留表,得到的结果为:
+-------------+----------+----------+-------------+
| customer_id | city | order_id | customer_id |
+-------------+----------+----------+-------------+
| 163 | hangzhou | 1 | 163 |
| 163 | hangzhou | 2 | 163 |
| 9you | shanghai | 3 | 9you |
| 9you | shanghai | 4 | 9you |
| 9you | shanghai | 5 | 9you |
| tx | hangzhou | 6 | tx |
| NULL | NULL | 7 | NULL |
+-------------+----------+----------+-------------+
FULL OUTER JOIN把左右表都作为保留表,得到的结果为:
+-------------+----------+----------+-------------+
| customer_id | city | order_id | customer_id |
+-------------+----------+----------+-------------+
| 163 | hangzhou | 1 | 163 |
| 163 | hangzhou | 2 | 163 |
| 9you | shanghai | 3 | 9you |
| 9you | shanghai | 4 | 9you |
| 9you | shanghai | 5 | 9you |
| tx | hangzhou | 6 | tx |
| baidu | hangzhou | NULL | NULL |
| NULL | NULL | 7 | NULL |
+-------------+----------+----------+-------------+
添加外部行的工作就是在VT2表的基础上添加保留表中被过滤条件过滤掉的数据,非保留表中的数据被赋予NULL值,最后生成虚拟表VT3。
由于我在准备的测试SQL查询逻辑语句中使用的是LEFT JOIN,过滤掉了以下这条数据:
| baidu | hangzhou | NULL | NULL |
现在就把这条数据添加到VT2表中,得到的VT3表如下
+-------------+----------+----------+-------------+
| customer_id | city | order_id | customer_id |
+-------------+----------+----------+-------------+
| 163 | hangzhou | 1 | 163 |
| 163 | hangzhou | 2 | 163 |
| 9you | shanghai | 3 | 9you |
| 9you | shanghai | 4 | 9you |
| 9you | shanghai | 5 | 9you |
| tx | hangzhou | 6 | tx |
| baidu | hangzhou | NULL | NULL |
+-------------+----------+----------+-------------+
接下来的操作都会在该VT3表上进行。
执行WHERE过滤
对添加外部行得到的VT3进行WHERE过滤,只有符合<where_condition>的记录才会输出到虚拟表VT4中。当我们执行WHERE a.city = 'hangzhou'的时候,就会得到以下内容,并存在虚拟表VT4中:
+-------------+----------+----------+-------------+
| customer_id | city | order_id | customer_id |
+-------------+----------+----------+-------------+
| 163 | hangzhou | 1 | 163 |
| 163 | hangzhou | 2 | 163 |
| tx | hangzhou | 6 | tx |
| baidu | hangzhou | NULL | NULL |
+-------------+----------+----------+-------------+
但是在使用WHERE子句时,需要注意以下两点:
- 由于数据还没有分组,因此现在还不能在WHERE过滤器中使用
where_condition=MIN(col)这类对分组统计的过滤; - 由于还没有进行列的选取操作,因此在SELECT中使用列的别名也是不被允许的,如:
SELECT city as c FROM t WHERE c='shanghai';是不允许出现的。
执行GROUP BY分组
GROU BY子句主要是对使用WHERE子句得到的虚拟表进行分组操作。我们执行测试语句中的GROUP BY a.customer_id,就会得到以下内容(默认只显示组内第一条):
+-------------+----------+----------+-------------+
| customer_id | city | order_id | customer_id |
+-------------+----------+----------+-------------+
| 163 | hangzhou | 1 | 163 |
| baidu | hangzhou | NULL | NULL |
| tx | hangzhou | 6 | tx |
+-------------+----------+----------+-------------+
得到的内容会存入虚拟表VT5中,此时,我们就得到了一个VT5虚拟表,接下来的操作都会在该表上完成。
执行HAVING过滤
HAVING子句主要和GROUP BY子句配合使用,对分组得到的VT5虚拟表进行条件过滤。当我执行测试语句中的HAVING count(b.order_id) < 2时,将得到以下内容:
+-------------+----------+----------+-------------+
| customer_id | city | order_id | customer_id |
+-------------+----------+----------+-------------+
| baidu | hangzhou | NULL | NULL |
| tx | hangzhou | 6 | tx |
+-------------+----------+----------+-------------+
这就是虚拟表VT6。
SELECT列表
现在才会执行到SELECT子句,不要以为SELECT子句被写在第一行,就是第一个被执行的。
我们执行测试语句中的SELECT a.customer_id, COUNT(b.order_id) as total_orders,从虚拟表VT6中选择出我们需要的内容。我们将得到以下内容:
+-------------+--------------+
| customer_id | total_orders |
+-------------+--------------+
| baidu | 0 |
| tx | 1 |
+-------------+--------------+
还没有完,这只是虚拟表VT7。
执行DISTINCT子句
如果在查询中指定了DISTINCT子句,则会创建一张内存临时表(如果内存放不下,就需要存放在硬盘了)。这张临时表的表结构和上一步产生的虚拟表VT7是一样的,不同的是对进行DISTINCT操作的列增加了一个唯一索引,以此来除重复数据。
由于我的测试SQL语句中并没有使用DISTINCT,所以,在该查询中,这一步不会生成一个虚拟表。
执行ORDER BY子句
对虚拟表中的内容按照指定的列进行排序,然后返回一个新的虚拟表,我们执行测试SQL语句中的ORDER BY total_orders DESC,就会得到以下内容:
+-------------+--------------+
| customer_id | total_orders |
+-------------+--------------+
| tx | 1 |
| baidu | 0 |
+-------------+--------------+
可以看到这是对total_orders列进行降序排列的。上述结果会存储在VT8中。
执行LIMIT子句
LIMIT子句从上一步得到的VT8虚拟表中选出从指定位置开始的指定行数据。对于没有应用ORDER BY的LIMIT子句,得到的结果同样是无序的,所以,很多时候,我们都会看到LIMIT子句会和ORDER BY子句一起使用。
MySQL数据库的LIMIT支持如下形式的选择:
LIMIT n, m
表示从第n条记录开始选择m条记录。而很多开发人员喜欢使用该语句来解决分页问题。对于小数据,使用LIMIT子句没有任何问题,当数据量非常大的时候,使用LIMIT n, m是非常低效的。因为LIMIT的机制是每次都是从头开始扫描,如果需要从第60万行开始,读取3条数据,就需要先扫描定位到60万行,然后再进行读取,而扫描的过程是一个非常低效的过程。所以,对于大数据处理时,是非常有必要在应用层建立一定的缓存机制(现在的大数据处理,大都使用缓存)
sql逻辑查询语句的执行顺序的更多相关文章
- mysql SQL 逻辑查询语句和执行顺序
关键字的执行优先级(重点) fromwheregroup byhavingselectdistinctorder bylimit 先创建两个表 CREATE TABLE table1 ( custom ...
- {MySQL的逻辑查询语句的执行顺序}一 SELECT语句关键字的定义顺序 二 SELECT语句关键字的执行顺序 三 准备表和数据 四 准备SQL逻辑查询测试语句 五 执行顺序分析
MySQL的逻辑查询语句的执行顺序 阅读目录 一 SELECT语句关键字的定义顺序 二 SELECT语句关键字的执行顺序 三 准备表和数据 四 准备SQL逻辑查询测试语句 五 执行顺序分析 一 SEL ...
- MySQL的逻辑查询语句的执行顺序
一.select语句关键字的定义顺序 二.select语句关键字的执行顺序 三.准备表和数据 四.准备SQL逻辑查询测试语句 五.执行顺序分析 一.select语句关键字的定义顺序 SELECT DI ...
- SQL逻辑查询语句执行顺序 需要重新整理
一.SQL语句定义顺序 1 2 3 4 5 6 7 8 9 10 SELECT DISTINCT <select_list> FROM <left_table> <joi ...
- python 3 mysql sql逻辑查询语句执行顺序
python 3 mysql sql逻辑查询语句执行顺序 一 .SELECT语句关键字的定义顺序 SELECT DISTINCT <select_list> FROM <left_t ...
- mysql第四篇--SQL逻辑查询语句执行顺序
mysql第四篇--SQL逻辑查询语句执行顺序 一.SQL语句定义顺序 SELECT DISTINCT <select_list> FROM <left_table> < ...
- 浅谈SQL优化入门:1、SQL查询语句的执行顺序
1.SQL查询语句的执行顺序 (7) SELECT (8) DISTINCT <select_list> (1) FROM <left_table> (3) <join_ ...
- SQLServer2005中查询语句的执行顺序
SQLServer2005中查询语句的执行顺序 --1.from--2.on--3.outer(join)--4.where--5.group by--6.cube|rollup--7.havin ...
- Oracle中的一些查询语句及其执行顺序
查询条件: 1)LIKE:模糊查询,需要借助两个通配符,%:表示0到多个字符:_:标识单个字符. 2)IN(list):用来取出符合列表范围中的数据. 3)NOT IN(list): 取出不符合此列表 ...
随机推荐
- snowflake and uuid
分布式系统中,有一些需要使用全局唯一ID的场景,这种时候为了防止ID冲突可以使用36位的UUID,但是UUID有一些缺点,首先他相对比较长,另外UUID一般是无序的. 有些时候我们希望能使用一种简单一 ...
- Pots--poj(bfs,输出路径)
http://poj.org/problem?id=3414 题意: 给你两个容量为a,b的杯子:有3个操作: 1:FILL(i):把第i个杯子从水库中装满: 2:DROP(i):把第i个杯子清空: ...
- KVM VHOST中irqfd的使用
2018-01-18 其实在之前的文章中已经简要介绍了VHOST中通过irqfd通知guest,但是并没有对irqfd的具体工作机制做深入分析,本节简要对irqfd的工作机制分析下.这里暂且不讨论具体 ...
- 手机e.pageX和e.pageY无效的原因
手机端拖拽事件: touchstart事件:当手指触摸屏幕时候触发,即使已经有一个手指放在屏幕上也会触发. touchmove事件:当手指在屏幕上滑动的时候连续地触发.在这个事件发生期间,调用prev ...
- 输出log到指定文件
0:pom.xml中添加依赖 <!--log4j--> <!--有错误时,可能版本不对,或者依赖没有加全 'org.apache.logging.log4j:log4j-core:2 ...
- NLP总览
一.自然语言处理概述 1)自然语言处理:利用计算机为工具,对书面实行或者口头形式进行各种各样的处理和加工的技术,是研究人与人交际中以及人与计算机交际中的演员问题的一门学科,是人工智能的主要内容. 2) ...
- Qt下QString转char*
Qt下面,字符串都用QString,确实给开发者提供了方便,想想VC里面定义的各种变量类型,而且函数参数类型五花八门,经常需要今年新那个类型转换 Qt再使用第三方开源库时,由于库的类型基本上都是标准的 ...
- http协议基础(八)请求首部字段
请求首部字段 定义:请求首部字段是从客户端到服务器发送请求报文中所使用的字段,里面包含了附加信息.客户端信息以及对响应内容相关的优先级等内容 1.Accept 通知服务器用户代理可处理的媒体类型及媒体 ...
- SQL Server 2008 R2 超详细安装图文教程
一.下载SQL Server 2008 R2安装文件 ed2k://|file|cn_sql_server_2008_r2_enterprise_x86_x64_ia64_dvd_522233.iso ...
- centos安装samba
yum -y install samba samba-client samba-swat /etc/init.d/smb start chkconfig --level 35 smb on cp -p ...