Qin Shi Huang's National Road System

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)

【Problem Description】
During the Warring States Period of ancient China(476 BC to 221 BC), there were seven kingdoms in China ---- they were Qi, Chu, Yan, Han, Zhao, Wei and Qin. Ying Zheng was the king of the kingdom Qin. Through 9 years of wars, he finally conquered all six other kingdoms and became the first emperor of a unified China in 221 BC. That was Qin dynasty ---- the first imperial dynasty of China(not to be confused with the Qing Dynasty, the last dynasty of China). So Ying Zheng named himself "Qin Shi Huang" because "Shi Huang" means "the first emperor" in Chinese.Qin Shi Huang undertook gigantic projects, including the first version of the Great Wall of China, the now famous city-sized mausoleum guarded by a life-sized Terracotta Army, and a massive national road system. There is a story about the road system: There were n cities in China and Qin Shi Huang wanted them all be connected by n-1 roads, in order that he could go to every city from the capital city Xianyang. Although Qin Shi Huang was a tyrant, he wanted the total length of all roads to be minimum,so that the road system may not cost too many people's life. A daoshi (some kind of monk) named Xu Fu told Qin Shi Huang that he could build a road by magic and that magic road would cost no money and no labor. But Xu Fu could only build ONE magic road for Qin Shi Huang. So Qin Shi Huang had to decide where to build the magic road. Qin Shi Huang wanted the total length of all none magic roads to be as small as possible, but Xu Fu wanted the magic road to benefit as many people as possible ---- So Qin Shi Huang decided that the value of A/B (the ratio of A to B) must be the maximum, which A is the total population of the two cites connected by the magic road, and B is the total length of none magic roads. Would you help Qin Shi Huang? A city can be considered as a point, and a road can be considered as a line segment connecting two points.
【Input】
The first line contains an integer t meaning that there are t test cases(t <= 10). For each test case: The first line is an integer n meaning that there are n cities(2 < n <= 1000). Then n lines follow. Each line contains three integers X, Y and P ( 0 <= X, Y <= 1000, 0 < P < 100000). (X, Y) is the coordinate of a city and P is the population of that city. It is guaranteed that each city has a distinct location.
【Output】
For each test case, print a line indicating the above mentioned maximum ratio A/B. The result should be rounded to 2 digits after decimal point.
【Sample Input】

【Sample Output】

65.00
70.00

【题意】

秦国有n个城市构成,每个城市都有一定的人口。现在要修路,要求最终修成的路花费最少代价使得所有的城市都连通。然后修路的时候可以使用一个魔法,免去一条路的费用,最终结果要使使用了魔法的那条路两端的城市总人口数除以剩下所有路的长度最大。

【分析】
最少代价使得所有点都连通,很容易能够想到最小生成树。
从最终答案是A/B入手,要使这个结果最大,但是明显A与B的大小会互相影响,故不符合贪心的要求。所以采用的只能是枚举每一条边,在指定A的前提下,使B最小。
考虑一下删边是两种情况:
1. i,j边恰好在最小生成树上,那么直接删掉;
2. i,j边不在最小生成树上,那么要在最小生成树中找到i,j路径上最长的边删去;
由于本题完全图的特殊性,如果i,j边在最小生成树上,那么i,j边直接就是路径上的最长边了,也即问题转化为给定两个点,要求在最小生成树上找到两个点路径上最长的边。
而这恰好是求解次小生成树的方法。
 
思路:
按照次小生成树的求法,在Prim的过程中就顺便把路径上的最长边记录下来。Kruskal也可以完成,但是在记录最长边的过程中,Prim是有序扩展,故复杂度会更低。
 
 /* ***********************************************
MYID : Chen Fan
LANG : G++
PROG : 4081
************************************************ */ #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
#include <cmath>
#include <bitset> using namespace std; typedef struct pnod
{
int x,y,p;
} pnode;
pnode p[]; typedef struct nod
{
int a,b;
double c;
friend bool operator < (nod a,nod b)
{
return a.c>b.c;
}
} node; node edge[];
int start[],num[]; bool op(node a,node b)
{
if (a.a==b.a) return a.c<b.c;
else return a.a<b.a;
} node ntoh(int a,int b,double c)
{
node x;
x.a=a;
x.b=b;
x.c=c;
return x;
} double maxx[][];
bitset<> inway[]; double prim(int s,int n)
{
/**/
int list[],listail=;
list[]=s;
/**/
priority_queue<node> heap;
while (!heap.empty()) heap.pop();
bitset<> flag;
flag.reset();
flag[s]=;
double ans=;
memset(maxx,,sizeof(maxx));
for (int i=;i<num[s];i++) heap.push(edge[start[s]+i]); for (int i=;i<n;i++)
{
node now=heap.top();
heap.pop();
while (flag[now.b])
{
now=heap.top();
heap.pop();
}
/**/
for (int j=;j<=listail;j++)
{
maxx[list[j]][now.b]=max(maxx[list[j]][now.a],now.c);
maxx[now.b][list[j]]=maxx[list[j]][now.b];
}
listail++;
list[listail]=now.b;
/**/
flag[now.b]=true;
ans+=now.c;
for (int j=;j<num[now.b];j++)
if (!flag[edge[start[now.b]+j].b]) heap.push(edge[start[now.b]+j]);
} return ans;
} double getdis(int x,int y)
{
return sqrt((p[x].x-p[y].x)*(p[x].x-p[y].x)+(p[x].y-p[y].y)*(p[x].y-p[y].y));
} int main()
{
freopen("4081.txt","r",stdin); int t;
scanf("%d",&t);
for (int tt=;tt<=t;tt++)
{
int n;
scanf("%d",&n);
for (int i=;i<=n;i++) scanf("%d%d%d",&p[i].x,&p[i].y,&p[i].p); int m=;
for (int i=;i<=n;i++)
{
start[i]=m+;
num[i]=n-;
for (int j=;j<=n;j++)
if (i!=j)
{
m++;
edge[m].a=i;
edge[m].b=j;
edge[m].c=getdis(i,j);
}
} double sum=prim(,n); double ma=;
for (int i=;i<=m;i++)
{
double temp=(p[edge[i].a].p+p[edge[i].b].p)/(sum-maxx[edge[i].a][edge[i].b]);
if (ma<temp) ma=temp;
} printf("%.2f\n",ma);
} return ;
}

HDU 4081 Qin Shi Huang's National Road System 次小生成树变种的更多相关文章

  1. hdu 4081 Qin Shi Huang's National Road System (次小生成树的变形)

    题目:Qin Shi Huang's National Road System Qin Shi Huang's National Road System Time Limit: 2000/1000 M ...

  2. HDU 4081 Qin Shi Huang's National Road System [次小生成树]

    题意: 秦始皇要建路,一共有n个城市,建n-1条路连接. 给了n个城市的坐标和每个城市的人数. 然后建n-2条正常路和n-1条魔法路,最后求A/B的最大值. A代表所建的魔法路的连接的城市的市民的人数 ...

  3. HDU 4081 Qin Shi Huang's National Road System 最小生成树+倍增求LCA

    原题链接:http://acm.hdu.edu.cn/showproblem.php?pid=4081 Qin Shi Huang's National Road System Time Limit: ...

  4. hdu 4081 Qin Shi Huang's National Road System (次小生成树)

    Qin Shi Huang's National Road System Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/3 ...

  5. HDU 4081—— Qin Shi Huang's National Road System——————【次小生成树、prim】

    Qin Shi Huang's National Road System Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/3 ...

  6. HDU4081 Qin Shi Huang's National Road System —— 次小生成树变形

    题目链接:https://vjudge.net/problem/HDU-4081 Qin Shi Huang's National Road System Time Limit: 2000/1000 ...

  7. hdu 4081 Qin Shi Huang's National Road System 树的基本性质 or 次小生成树思想 难度:1

    During the Warring States Period of ancient China(476 BC to 221 BC), there were seven kingdoms in Ch ...

  8. hdu 4081 Qin Shi Huang's National Road System(次小生成树prim)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4081 题意:有n个城市,秦始皇要修用n-1条路把它们连起来,要求从任一点出发,都可以到达其它的任意点. ...

  9. HDU - 4081 Qin Shi Huang's National Road System 【次小生成树】

    题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=4081 题意 给出n个城市的坐标 以及 每个城市里面有多少人 秦始皇想造路 让每个城市都连通 (直接或者 ...

随机推荐

  1. uCGUI的文字与数值显示方法

    uCGUI的数值显示非常的灵活方便,是制作LCD界面非常好的选择. 文字与数值显示的方法: 常用文本显示函数: void GUI_DispStringAt(const char GUI_FAR *s, ...

  2. CSS中常见中文字体的英文名称(Microsoft YaHei,SimHei)

    Mac OS的一些: 华文细黑:STHeiti Light [STXihei]华文黑体:STHeiti华文楷体:STKaiti华文宋体:STSong华文仿宋:STFangsong儷黑 Pro:LiHe ...

  3. css3的box-sizing

    给了两个并排带边框的div百分比宽度,假如不用box-sizing,边框的宽度会在行内显示.用box-sizing:border-box,可以去除边框的占位. 浏览器支持IE9以上及火狐.谷歌.Ope ...

  4. UITabBarItem's appearance

    1.我们知道,用tabBarController创建出来默认的tabBar似这个样子滴... -----------------我是图片分割线----------------------------- ...

  5. php 图片压缩处理

    <?php require dirname(__FILE__).'/../includes/common.inc.php'; $_clean = array(); $_info = array( ...

  6. php 环信 接口的例子

    <?php class Hxcall{ private $app_key = 'yunjiankang#medical'; private $client_id = 'YXA6ARjBgDnxE ...

  7. Jmeter的优点是什么?除了轻量级,它和LoadRunner有什么本质区别

    1.jmeter的架构和loadrunner原理一样,都是通过中间代理,监控和收集并发客户端发出的指令,把他们生成脚本,再发送到应用服务器,再监控服务器反馈结果的一个过程: 2.分布式中间代理功能在j ...

  8. HDOJ--ACM-Steps--2.1.3--Cake(GCD,简单数学)

    一次生日Party可能有p人或者q人参加,现准备有一个大蛋糕.问最少要将蛋糕切成多少块(每块大小不一定相等),才能使p人或者q人出席的任何一种情况,都能平均将蛋糕分食. Input 每行有两个数p和q ...

  9. android5.0----SVG

    SVG ----scalable vector Graphics 可缩放矢量图形 android L 即android 5.0的新特性. 1,SVG是干什么的? 可缩放矢量图形是基于可扩展标记语言(标 ...

  10. VS2013编译FileZilla0.9.44

    2014年,FileZilla更新了一下,到了44版本了,貌似也是用VS2013的工程做的项目,所以下载了server的安装包,然后安装SourceCode即可(需要安装InterFace,是安装必选 ...