Description

  During the kindergarten days, flymouse was the monitor of his class. Occasionally the head-teacher brought the kids of flymouse’s class a large bag of candies and had flymouse distribute them. All the kids loved candies very much and often compared the numbers of candies they got with others. A kid A could had the idea that though it might be the case that another kid B was better than him in some aspect and therefore had a reason for deserving more candies than he did, he should never get a certain number of candies fewer than B did no matter how many candies he actually got, otherwise he would feel dissatisfied and go to the head-teacher to complain about flymouse’s biased distribution.

  snoopy shared class with flymouse at that time. flymouse always compared the number of his candies with that of snoopy’s. He wanted to make the difference between the numbers as large as possible while keeping every kid satisfied. Now he had just got another bag of candies from the head-teacher, what was the largest difference he could make out of it?

  题目就是差分约束问题,但是这个题卡SPFA。。。。。。

代码如下:

#include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <math.h>
#include <stdlib.h>
#include <time.h> using namespace std; const int MaxN=;
const int MaxM=;
const int INF=10e9+; struct Node
{
int id,val; Node(int _id=,int _val=):id(_id),val(_val) {} bool operator < (const Node & a) const
{
return val>a.val;
}
}; struct Edge
{
int to,next,cost;
}; Edge E[MaxM];
int head[MaxN],Ecou;
int vis[MaxN]; void Dijkstra(int lowcost[],int N,int start)
{
priority_queue <Node> que;
Node temp;
int u,v,c; for(int i=;i<=N;++i)
{
lowcost[i]=INF;
vis[i]=;
} que.push(Node(start,));
lowcost[start]=; while(!que.empty())
{
temp=que.top();
que.pop(); u=temp.id; if(vis[u])
continue; vis[u]=; for(int i=head[u];i!=-;i=E[i].next)
{
v=E[i].to;
c=E[i].cost; if(lowcost[v]>lowcost[u]+c && !vis[v])
{
lowcost[v]=lowcost[u]+c;
que.push(Node(v,lowcost[v]));
}
}
}
} void init(int N)
{
for(int i=;i<=N;++i)
head[i]=-;
Ecou=;
} void addEdge(int u,int v,int c)
{
E[Ecou].to=v;
E[Ecou].cost=c;
E[Ecou].next=head[u];
head[u]=Ecou++;
} int ans[MaxN]; int main()
{
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout); int N,M;
int a,b,c; scanf("%d %d",&N,&M); init(N); while(M--)
{
scanf("%d %d %d",&a,&b,&c);
addEdge(a,b,c);
} Dijkstra(ans,N,); printf("%d\n",ans[N]); return ;
}

(简单) POJ 3159 Candies,Dijkstra+差分约束。的更多相关文章

  1. POJ 3159 Candies 【差分约束+Dijkstra】

    <题目链接> 题目大意: 给n个人派糖果,给出m组数据,每组数据包含A,B,c 三个数,意思是A的糖果数比B少的个数不多于c,即B的糖果数 - A的糖果数<= c .最后求n 比 1 ...

  2. POJ 3159 Candies(差分约束,最短路)

    Candies Time Limit: 1500MS   Memory Limit: 131072K Total Submissions: 20067   Accepted: 5293 Descrip ...

  3. POJ 3159 Candies(差分约束+spfa+链式前向星)

    题目链接:http://poj.org/problem?id=3159 题目大意:给n个人派糖果,给出m组数据,每组数据包含A,B,C三个数,意思是A的糖果数比B少的个数不多于C,即B的糖果数 - A ...

  4. POJ 3159 Candies(差分约束+最短路)题解

    题意:给a b c要求,b拿的比a拿的多但是不超过c,问你所有人最多差多少 思路:在最短路专题应该能看出来是差分约束,条件是b - a <= c,也就是满足b <= a + c,和spfa ...

  5. POJ 3159 Candies(差分约束)

    http://poj.org/problem?id=3159 题意:有向图,第一行n是点数,m是边数,每一行有三个数,前两个是有向边的起点与终点,最后一个是权值,求从1到n的最短路径. 思路:这个题让 ...

  6. poj 3159 Candies (差分约束)

    一个叫差分约束系统的东西.如果每个点定义一个顶标x(v),x(t)-x(s)将对应着s-t的最短路径. 比如说w+a≤b,那么可以画一条a到b的有向边,权值为w,同样地给出b+w2≤c,a+w3≤c. ...

  7. POJ 3159 Candies 还是差分约束(栈的SPFA)

    http://poj.org/problem?id=3159 题目大意: n个小朋友分糖果,你要满足他们的要求(a b x 意思为b不能超过a x个糖果)并且编号1和n的糖果差距要最大. 思路: 嗯, ...

  8. (简单) POJ 3169 Layout,差分约束+SPFA。

    Description Like everyone else, cows like to stand close to their friends when queuing for feed. FJ ...

  9. poj 3159 Candies dijkstra + queue

    题目链接: http://poj.org/searchproblem 题目大意: 飞天鼠是班长,一天班主任买了一大包糖果,要飞天鼠分发给大家,班里面有n个人,但是学生A认为学生B比自己多的糖果数目不应 ...

随机推荐

  1. 转 Oracle 12C 之 CDB/PDB用户的创建与对象管理

    在Oracle 12C中,账号分为两种,一种是公用账号,一种是本地账号(亦可理解为私有账号).共有账号是指在CDB下创建,并在全部PDB中生效的账号,另一种是在PDB中创建的账号. 针对这两种账号的测 ...

  2. LA 4329 BIT 分治

    #include <cstdio> #include <queue> #include <cstring> #include <iostream> #i ...

  3. A convenient way of installing(compiling) VIM with YCM

    Ah, while I am still downloading LLVM from github(very slow.. and very large in size). I come with m ...

  4. webview h5页面 关闭

    说明:在 ios 安卓  客户端上的h5页面执行完毕关闭h5页面   引入的js在文件中的xhdoctor_mobile.rar

  5. UIGestureRecognizer 手势浅析

    目录[-] iOS开发中的手势体系——UIGestureRecognizer分析及其子类的使用 一.引言 二.手势的抽象类——UIGestureRecognizer 1.统一的初始化方法 2.手势状态 ...

  6. 关于在jsp中的表达式

    列子: <%List<F_dd_tourist_info_markup> tourists = (List<F_dd_tourist_info_markup>) requ ...

  7. margin

    <!doctype html> <html> <head> <meta charset="utf-8"> <title> ...

  8. windows程序设计(四)

    对话框常用相关消息映射函数: 一.对话框初始化消息: 1.WM_CREATE:通用窗口初始化消息 窗口还未显示出来,只有父窗口,子窗口还没创建 2.WM_INITDIALOG:对话框窗口专用消息 子窗 ...

  9. EDA 事件驱动框架

    事件代表过去发生的事件,事件既是技术架构概念,也是业务概念.以事件为驱动的编程模型称为事件驱动架构EDA. EDA是一种以事件为媒介,实现组件或服务之间最大松耦合的方式.传统面向接口编程是以接口为媒介 ...

  10. HTML center tag

    <center>This text will be center-aligned.</center> 或者可以把一个div给center了,例如将一个html表格给center ...