Memory Management

Time limit: 2.0 second
Memory limit: 64 MB

Background

Don't you know that at school pupils’ programming contest a new computer language has been developed. We call it D++. Generally speaking it doesn't matter if you know about it or not. But to run programs written in D++ we need a new operating system. It should be rather powerful and complex. It should work fast and have a lot of possibilities. But all this should be done in a future.
And now you are to… No. You should not devise the name for the operating system. You are to write the first module for this new OS. And of course it's the memory management module. Let's discuss how it is expected to work.

Problem

Our operating system is to allocate memory in pieces that we’ll call “blocks”. The blocks are to be numbered by integers from 1 up to N. When operating system needs more memory it makes a request to the memory management module. To process this request the memory management module should find free memory block with the least number. You may assume that there are enough blocks to process all requests.
Now we should define the meaning of words “free block”. At the moment of first request to the memory management module all blocks are considered to be free. Also a block becomes free when there were no requests to it during T minutes.
You may wonder about a notion “request to allocated blocks”. What does it mean, “request to allocated block”? The answer is simple: at any time the memory management module may be requested to access a given block. To process this request the memory management module should check if the requested block is really allocated. If it is, the request is considered to be successful and the block remains allocated for T minutes more. Otherwise the request is failed.
That's all about the algorithms of the memory management block. You are to implement them for N = 30 000 and T = 10 minutes.

Input

Each line of input contains a request for memory block allocation or memory block access. Memory allocation request has a form:
<Time> +
where <Time> is a nonnegative integer number not greater than 65 000. Time is given in seconds. Memory block access request has a form:
<Time> . <BlockNo>
where <Time> meets conditions mentioned above for the memory allocation request and <BlockNo> is an integer value in range from 1 to N. There will be no more than 80000 requests.

Output

For each line of input you should print exactly one line with a result of request processing. For memory allocation request you are to write an only integer — a number of allocated block. As it was mentioned above you may assume that every request can be satisfied, there will be no more than Nsimultaneously allocated blocks. For memory block access request you should print the only character:
  • '+' if request is successful (i.e. block is really allocated);
  • '-' if request fails (i.e. block with number given is free, so it can't be accessed).
Requests are arranged by their times in an increasing order. Requests with equal times should be processed as they appear in input.

Sample

input output
1 +
1 +
1 +
2 . 2
2 . 3
3 . 30000
601 . 1
601 . 2
602 . 3
602 +
602 +
1202 . 2
1
2
3
+
+
-
-
+
-
1
3
-

分析:树状数组来找当前第一个空闲内存;

   优先队列来判断内存是否过期,注意优先队列里的时间不一定是实际到期时间,要注意判断;

代码:

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <algorithm>
#include <climits>
#include <cstring>
#include <string>
#include <set>
#include <map>
#include <queue>
#include <stack>
#include <vector>
#include <list>
#define rep(i,m,n) for(i=m;i<=n;i++)
#define rsp(it,s) for(set<int>::iterator it=s.begin();it!=s.end();it++)
#define mod 1000000007
#define inf 0x3f3f3f3f
#define vi vector<int>
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define ll long long
#define pi acos(-1.0)
#define pii pair<int,int>
#define Lson L, mid, rt<<1
#define Rson mid+1, R, rt<<1|1
const int maxn=3e4+;
const int dis[][]={{,},{-,},{,-},{,}};
using namespace std;
ll gcd(ll p,ll q){return q==?p:gcd(q,p%q);}
ll qpow(ll p,ll q){ll f=;while(q){if(q&)f=f*p%mod;p=p*p%mod;q>>=;}return f;}
int n,m,k,t,now[maxn],a[maxn];
void add(int x,int y)
{
for(int i=x;i<=maxn-;i+=(i&(-i)))
a[i]+=y;
}
int get(int x)
{
int res=;
for(int i=x;i;i-=(i&(-i)))
res+=a[i];
return res;
}
struct node
{
int t,id;
node(int _t,int _id)
{
t=_t,id=_id;
}
bool operator<(const node&p)const
{
return t>p.t;
}
};
char op[];
priority_queue<node>q;
int main()
{
int i,j;
memset(now,-,sizeof now);
while(~scanf("%d",&n))
{
scanf("%s",op);
if(op[]=='.'){
scanf("%d",&m);
if(now[m]>=n)
{
now[m]=n+;
puts("+");
}
else puts("-");
}
else
{
while(!q.empty()&&q.top().t<n){
if(now[q.top().id]<n)add(q.top().id,-);
else q.push(node(now[q.top().id],q.top().id));
q.pop();
}
int l=,r=,ret;
while(l<=r)
{
int mid=l+r>>;
if(get(mid)<mid)ret=mid,r=mid-;
else l=mid+;
}
add(ret,);
now[ret]=n+;
q.push(node(now[ret],ret));
printf("%d\n",ret);
}
}
//system("pause");
return ;
}

ural1037 Memory Management的更多相关文章

  1. Memory Management in Open Cascade

    Open Cascade中的内存管理 Memory Management in Open Cascade eryar@163.com 一.C++中的内存管理 Memory Management in ...

  2. Java (JVM) Memory Model – Memory Management in Java

    原文地址:http://www.journaldev.com/2856/java-jvm-memory-model-memory-management-in-java Understanding JV ...

  3. Objective-C Memory Management

    Objective-C Memory Management Using Reference Counting 每一个从NSObject派生的对象都继承了对应的内存管理的行为.这些类的内部存在一个称为r ...

  4. Operating System Memory Management、Page Fault Exception、Cache Replacement Strategy Learning、LRU Algorithm

    目录 . 引言 . 页表 . 结构化内存管理 . 物理内存的管理 . SLAB分配器 . 处理器高速缓存和TLB控制 . 内存管理的概念 . 内存覆盖与内存交换 . 内存连续分配管理方式 . 内存非连 ...

  5. Android内存管理(2)HUNTING YOUR LEAKS: MEMORY MANAGEMENT IN ANDROID PART 2

    from: http://www.raizlabs.com/dev/2014/04/hunting-your-leaks-memory-management-in-android-part-2-of- ...

  6. Android内存管理(1)WRANGLING DALVIK: MEMORY MANAGEMENT IN ANDROID PART 1

    from : http://www.raizlabs.com/dev/2014/03/wrangling-dalvik-memory-management-in-android-part-1-of-2 ...

  7. Understanding Memory Management(2)

    Understanding Memory Management Memory management is the process of allocating new objects and remov ...

  8. Java Memory Management(1)

    Java Memory Management, with its built-in garbage collection, is one of the language’s finest achiev ...

  9. 再谈.net的堆和栈---.NET Memory Management Basics

    .NET Memory Management Basics .NET memory management is designed so that the programmer is freed fro ...

随机推荐

  1. 浅谈hbase表中数据导出导入(也就是备份)

    转自:http://blog.chinaunix.net/xmlrpc.php?r=blog/article&uid=23916356&id=3321832 最近因为生产环境hbase ...

  2. 转:java.io.IOException: Exceeeded maximum number of redirects: 5 解决版本

    Jmeter运行的时候出现的重定向超过n次的问题: When trying to test a Silverlight application, I get the below error. Has ...

  3. JavaScript 错误 - Throw、Try 和 Catch

    http://www.w3school.com.cn/js/js_errors.asp try 语句测试代码块的错误.catch 语句处理错误.throw 语句创建自定义错误. 错误一定会发生 当 J ...

  4. Struts2原理图

  5. EntityFramework日志记录

    首先在应用启动时执行:DbInterception.Add(new LogFormatter());   然后加入如下类: #region [ EF的数据库执行日志记录 ] public class ...

  6. flash 右键菜单隐藏与修改

    来源:http://blog.sina.com.cn/s/blog_7264c84401014fmd.html import flash.ui.ContextMenu;import flash.ui. ...

  7. Docker私有仓库Registry 搭建

    1. 关于Registry 官方的Docker hub是一个用于管理公共镜像的好地方,我们可以在上面找到我们想要的镜像,也可以把我们自己的镜像推送上去.但是,有时候,我们的使用场景需要我们拥有一个私有 ...

  8. PHP编码相关函数试题

    1.检查字符串在指定的编码里是否有效的函数是什么? 2.获取字符编码的函数是什么? 3.解析 GET/POST/COOKIE 数据并设置全局变量的函数是什么? 4.大小写不敏感地查找字符串在另一个字符 ...

  9. Django 分页功能

    Django 分页功能比较强大,这边是结合官网的内容写的可以参考 https://docs.djangoproject.com/en/1.9/topics/pagination/ 分页命令行练习案列 ...

  10. 5.1 timestamp数据类型默认值

    5.1 不支持同一张表中有多个tmiestamp类型字段的默认值为current_time,  5.6版本无此问题