Memory Management

Time limit: 2.0 second
Memory limit: 64 MB

Background

Don't you know that at school pupils’ programming contest a new computer language has been developed. We call it D++. Generally speaking it doesn't matter if you know about it or not. But to run programs written in D++ we need a new operating system. It should be rather powerful and complex. It should work fast and have a lot of possibilities. But all this should be done in a future.
And now you are to… No. You should not devise the name for the operating system. You are to write the first module for this new OS. And of course it's the memory management module. Let's discuss how it is expected to work.

Problem

Our operating system is to allocate memory in pieces that we’ll call “blocks”. The blocks are to be numbered by integers from 1 up to N. When operating system needs more memory it makes a request to the memory management module. To process this request the memory management module should find free memory block with the least number. You may assume that there are enough blocks to process all requests.
Now we should define the meaning of words “free block”. At the moment of first request to the memory management module all blocks are considered to be free. Also a block becomes free when there were no requests to it during T minutes.
You may wonder about a notion “request to allocated blocks”. What does it mean, “request to allocated block”? The answer is simple: at any time the memory management module may be requested to access a given block. To process this request the memory management module should check if the requested block is really allocated. If it is, the request is considered to be successful and the block remains allocated for T minutes more. Otherwise the request is failed.
That's all about the algorithms of the memory management block. You are to implement them for N = 30 000 and T = 10 minutes.

Input

Each line of input contains a request for memory block allocation or memory block access. Memory allocation request has a form:
<Time> +
where <Time> is a nonnegative integer number not greater than 65 000. Time is given in seconds. Memory block access request has a form:
<Time> . <BlockNo>
where <Time> meets conditions mentioned above for the memory allocation request and <BlockNo> is an integer value in range from 1 to N. There will be no more than 80000 requests.

Output

For each line of input you should print exactly one line with a result of request processing. For memory allocation request you are to write an only integer — a number of allocated block. As it was mentioned above you may assume that every request can be satisfied, there will be no more than Nsimultaneously allocated blocks. For memory block access request you should print the only character:
  • '+' if request is successful (i.e. block is really allocated);
  • '-' if request fails (i.e. block with number given is free, so it can't be accessed).
Requests are arranged by their times in an increasing order. Requests with equal times should be processed as they appear in input.

Sample

input output
1 +
1 +
1 +
2 . 2
2 . 3
3 . 30000
601 . 1
601 . 2
602 . 3
602 +
602 +
1202 . 2
1
2
3
+
+
-
-
+
-
1
3
-

分析:树状数组来找当前第一个空闲内存;

   优先队列来判断内存是否过期,注意优先队列里的时间不一定是实际到期时间,要注意判断;

代码:

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <algorithm>
#include <climits>
#include <cstring>
#include <string>
#include <set>
#include <map>
#include <queue>
#include <stack>
#include <vector>
#include <list>
#define rep(i,m,n) for(i=m;i<=n;i++)
#define rsp(it,s) for(set<int>::iterator it=s.begin();it!=s.end();it++)
#define mod 1000000007
#define inf 0x3f3f3f3f
#define vi vector<int>
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define ll long long
#define pi acos(-1.0)
#define pii pair<int,int>
#define Lson L, mid, rt<<1
#define Rson mid+1, R, rt<<1|1
const int maxn=3e4+;
const int dis[][]={{,},{-,},{,-},{,}};
using namespace std;
ll gcd(ll p,ll q){return q==?p:gcd(q,p%q);}
ll qpow(ll p,ll q){ll f=;while(q){if(q&)f=f*p%mod;p=p*p%mod;q>>=;}return f;}
int n,m,k,t,now[maxn],a[maxn];
void add(int x,int y)
{
for(int i=x;i<=maxn-;i+=(i&(-i)))
a[i]+=y;
}
int get(int x)
{
int res=;
for(int i=x;i;i-=(i&(-i)))
res+=a[i];
return res;
}
struct node
{
int t,id;
node(int _t,int _id)
{
t=_t,id=_id;
}
bool operator<(const node&p)const
{
return t>p.t;
}
};
char op[];
priority_queue<node>q;
int main()
{
int i,j;
memset(now,-,sizeof now);
while(~scanf("%d",&n))
{
scanf("%s",op);
if(op[]=='.'){
scanf("%d",&m);
if(now[m]>=n)
{
now[m]=n+;
puts("+");
}
else puts("-");
}
else
{
while(!q.empty()&&q.top().t<n){
if(now[q.top().id]<n)add(q.top().id,-);
else q.push(node(now[q.top().id],q.top().id));
q.pop();
}
int l=,r=,ret;
while(l<=r)
{
int mid=l+r>>;
if(get(mid)<mid)ret=mid,r=mid-;
else l=mid+;
}
add(ret,);
now[ret]=n+;
q.push(node(now[ret],ret));
printf("%d\n",ret);
}
}
//system("pause");
return ;
}

ural1037 Memory Management的更多相关文章

  1. Memory Management in Open Cascade

    Open Cascade中的内存管理 Memory Management in Open Cascade eryar@163.com 一.C++中的内存管理 Memory Management in ...

  2. Java (JVM) Memory Model – Memory Management in Java

    原文地址:http://www.journaldev.com/2856/java-jvm-memory-model-memory-management-in-java Understanding JV ...

  3. Objective-C Memory Management

    Objective-C Memory Management Using Reference Counting 每一个从NSObject派生的对象都继承了对应的内存管理的行为.这些类的内部存在一个称为r ...

  4. Operating System Memory Management、Page Fault Exception、Cache Replacement Strategy Learning、LRU Algorithm

    目录 . 引言 . 页表 . 结构化内存管理 . 物理内存的管理 . SLAB分配器 . 处理器高速缓存和TLB控制 . 内存管理的概念 . 内存覆盖与内存交换 . 内存连续分配管理方式 . 内存非连 ...

  5. Android内存管理(2)HUNTING YOUR LEAKS: MEMORY MANAGEMENT IN ANDROID PART 2

    from: http://www.raizlabs.com/dev/2014/04/hunting-your-leaks-memory-management-in-android-part-2-of- ...

  6. Android内存管理(1)WRANGLING DALVIK: MEMORY MANAGEMENT IN ANDROID PART 1

    from : http://www.raizlabs.com/dev/2014/03/wrangling-dalvik-memory-management-in-android-part-1-of-2 ...

  7. Understanding Memory Management(2)

    Understanding Memory Management Memory management is the process of allocating new objects and remov ...

  8. Java Memory Management(1)

    Java Memory Management, with its built-in garbage collection, is one of the language’s finest achiev ...

  9. 再谈.net的堆和栈---.NET Memory Management Basics

    .NET Memory Management Basics .NET memory management is designed so that the programmer is freed fro ...

随机推荐

  1. 【3】docker命令集

    root@xcc-VirtualBox:/home/xcc# docker --helpUsage: docker [OPTIONS] COMMAND [arg...]       docker [ ...

  2. js算数方法

    原文:http://www.w3school.com.cn/js/js_obj_math.asp 除了可被 Math 对象访问的算数值以外,还有几个函数(方法)可以使用. 函数(方法)实例: 下面的例 ...

  3. 一个Cmake的例子

    命令查询列表:http://www.cmake.org/cmake/help/v3.2/manual/cmake-commands.7.html # # Official dependency num ...

  4. Entity Framework技巧系列之六 - Tip 20 – 25

    提示20. 怎样处理固定长度的主键 这是正在进行中的Entity Framework提示系列的第20篇. 固定长度字段填充: 如果你的数据库中有一个固定长度的列,例如像NCHAR(10)类型的列,当你 ...

  5. tsung: an open-source multi-protocol distributed load testing tool

     ROPERTIES::type: KnowledgeBase_Cloud:END: 开源.多协议.分布式的压力测试工具   Item Summary tsung-recorder start 通过p ...

  6. 模拟摇奖:从1-36中随机抽出8个不重复的数字(math)

    public class Yaojiang { public static void main(String[] args) { // TODO 自动生成的方法存根 int[] a=new int[8 ...

  7. Hadoop 中关于 map,reduce 数量设置

    map和reduce是hadoop的核心功能,hadoop正是通过多个map和reduce的并行运行来实现任务的分布式并行计算,从这个观点来看,如果将map和reduce的数量设置为1,那么用户的任务 ...

  8. WEBROOT根目录 <%=request.getContextPath()%>

    WEBROOT根目录 <%=request.getContextPath()%> == ${pageContext.request.contextPath}

  9. centos 6.2安装bind 9.8.2 master、slave与自动修改后更新

    原创作品,允许转载,转载时请务必以超链接形式标明文章 原始出处 .作者信息和本声明.否则将追究法律责任.http://dl528888.blog.51cto.com/2382721/1249311 随 ...

  10. 使WiFi具有保存历史连接的功能

    在wpa_supplicant.conf里面添加这个功能 update_config=1 就能更新了,保存了历史的连接AP,不用再输入密码