生日蛋糕(DFS)
题意:
Description
7月17日是Mr.W的生日,ACM-THU为此要制作一个体积为Nπ的M层生日蛋糕,每层都是一个圆柱体。
设从下往上数第i(1 <= i <= M)层蛋糕是半径为Ri, 高度为Hi的圆柱。当i < M时,要求Ri > Ri+1且Hi > Hi+1。
由于要在蛋糕上抹奶油,为尽可能节约经费,我们希望蛋糕外表面(最下一层的下底面除外)的面积Q最小。
令Q = Sπ
请编程对给出的N和M,找出蛋糕的制作方案(适当的Ri和Hi的值),使S最小。 (除Q外,以上所有数据皆为正整数)
Input
有两行,第一行为N(N <= 10000),表示待制作的蛋糕的体积为Nπ;第二行为M(M <= 20),表示蛋糕的层数为M。
Output
仅一行,是一个正整数S(若无解则S = 0)。
Sample Input
100
2
Sample Output
68
思路:
由于深度一定(m),所以使用深度优先搜索,自上而下的设定蛋糕序号,最顶层的为第1层,……,最底层的蛋糕为第m层,很明显满足题目条件的前i层的(从顶层(也就是编号为1的层)开始计数)最小面积mins[i]和体积minv[i]是在该层的半径以及高度都为i时取得,如果采用一般的神搜肯定会超时,所以这题还需要剪枝,剪枝条件有(从m层向上搜,假设前level层的体积为v,面积为s,当前所得的最小面积为best):
1> 因为前level层的体积为v,如果剩下的几层的体积都取最小可能值,总体积还是比n大,那么则说明前level层的方案不可行,所以可以剪枝(剪枝条件
为:v+minv[dep-1]>n)
2> 因为前level层的面积为s,如果剩下的几层的面积都取最小可能值,所得的面积和比已经得到的所求的最小面积best大,也可以进行剪枝(剪枝条件
为:s+mins[dep-1]>best)
3> 因为前level层的体积为v,那么剩余的m-level层的体积满足:n-v=(h[k](r[k]^2)+……+h[m](r[m]^2))(k=level+1,……,m)
而剩余部分的表面积满足:lefts=2*(r[k]h[k]+……+r[m]*h[m])>2(n-v)/r[level] (k=level+1,……,m)
显然有上述不等式lefts=best-s>2*(n-v)/r[level]。所以剪枝条件为:(2*(n-v)/r[level]+s>best)
#include<stdio.h>
#include<math.h>
#define cmp(a,b) (a<b?a:b)
const int inf=0x7fffffff;
int minv[21],mins[21];
int V,m;
int ans;
void dfs(int v,int s,int level,int r,int h)//level为搜索深度,从底层m层向上搜,r,h分别为该层的半径和高度
{
if(level==0){//搜索完成,则更新最小面积值
if(v==V&&s<ans)
ans=s;
return;
}
if(v+minv[level-1]>V||s+mins[level-1]>ans||2*(V-v)/r+s>=ans)//剪枝1:
return ;
int i,j,h_now;
for(i=r-1;i>=level;i--)//按递减顺序枚举level层蛋糕半径的每一个可能值,这里第level层的半径最小值为level
{
if(level==m)//底面积作为外表面积的初始值(总的上表面积,以后只需计算侧面积)
s=i*i;
h_now=cmp((V-v-minv[level-1])/(i*i),h-1); //最大高度,即level层蛋糕高度的上限,(n-v-minv[level-1])表示第level层最大的体积
for(j=h_now;j>=level;j--)//同理,第level层的最小高度值为level
dfs(v+i*i*j,s+2*i*j,level-1,i,j);//递归搜索子状态
}
}
int main()
{
int i;
minv[0]=0;
mins[0]=0;
for(i=1;i<=20;i++)//从顶层向下计算出最小体积和表面积的可能值
{ //从顶层(即第一层)到第i层的最小体积minv[i]成立时第i层的半径和高度都是i
minv[i]=minv[i-1]+i*i*i;//不是每层的最最下体积,而是i~1层的最小体积。
mins[i]=mins[i-1]+2*i*i;//同上
}
while(scanf("%d%d",&V,&m)==2)
{
ans=inf;
int r=sqrt(V/m)+1;//m层的最大半径。
int h=V/(m*m)+1;//m层的最大的高。
dfs(0,0,m,r+1,h+1);
if(ans==0x7fffffff)
printf("0\n");
else
printf("%d\n",ans);
}
return 0;
}
生日蛋糕(DFS)的更多相关文章
- POJ1190生日蛋糕[DFS 剪枝]
生日蛋糕 Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 18236 Accepted: 6497 Description ...
- 生日蛋糕—dfs
Description 7月17日是Mr.W的生日,ACM-THU为此要制作一个体积为Nπ的M层生日蛋糕,每层都是一个圆柱体. 设从下往上数第i(1 <= i <= M)层蛋糕是半径为Ri ...
- poj1190 生日蛋糕 dfs
题意:生日蛋糕有m层,总体积是V.从下向上,每一层的半径r和高度h都是递减的. 给m.v,求最小的表面积s.(不算底面接地的面积) 题目链接:poj1190 剪枝都还没加..样例输出都是错的...还没 ...
- [洛谷P1731][NOI1999]生日蛋糕(dfs)(剪枝)
典型的深搜+剪枝策略 我们采用可行性剪枝.上下界剪枝.优化搜索顺序剪枝.最优性剪枝的方面来帮助我们进行剪枝. 也许有人还不知道剪枝,那我就弱弱地为大家补习一下吧qwq: .优化搜索顺序: 在一些搜索问 ...
- 洛谷P1731生日蛋糕(dfs+剪枝)
P1731 生日蛋糕 题目背景 7月17日是Mr.W的生日,ACM-THU为此要制作一个体积为Nπ的M层 生日蛋糕,每层都是一个圆柱体. 设从下往上数第i(1<=i<=M)层蛋糕是半径为R ...
- POJ - 1190 生日蛋糕 dfs+剪枝
思路:说一下最重要的剪枝,如果当前已经使用了v的体积,为了让剩下的表面积最小,最好的办法就是让R尽量大,因为V = πR 2H,A' = 2πRH,A' = V / R * 2 ,最大的R一定是取当前 ...
- [POJ1190]生日蛋糕<DFS>
题目链接:http://poj.org/problem?id=1190 题看上去确实很复杂 涉及到半径面积这些,其实看着真的很头疼 但是除去这些就是剪枝优化的dfs算法 #include<cst ...
- POJ 1190 生日蛋糕(DFS)
生日蛋糕 Time Limit: 1000MSMemory Limit: 10000KB64bit IO Format: %I64d & %I64u Submit Status Descrip ...
- 【dfs】p1731 生日蛋糕
1441:[例题2]生日蛋搞 [题目描述] 7月17日是Mr.W的生日,ACM-THU为此要制作一个体积为Nπ的M层生日蛋糕,每层都是一个圆柱体.设从下往上数第i(1≤i≤M)层蛋糕是半径为Ri, 高 ...
随机推荐
- POJ 2536 Gopher II
二分图的最大匹配 地鼠内部和地鼠洞内部都是没有边相连的,那么就可以看成一个二分图.地鼠如果可以跑到那个地鼠洞,就连一条边,然后跑二分图的最大匹配,最后地鼠的数量减去最大匹配数就是答案. #includ ...
- VB postmessage发送后台Tab
键盘是我们使用计算机的一个很重要的输入设备了,即使在鼠标大行其道的今天,很多程序依然离不开键盘来操作.但是有时候,一些重复性的,很繁琐的键盘操作总会让人疲惫,于是就有了用程序来代替人们按键的方法,这样 ...
- 如何更改mysql可执行路径及更改mysql数据库文件路径
一.如何更改服务中MySQL的可执行文件路径: 解决方法:到注册表里HKEY_LOCAL_MECHINE---SYSTEM ---CurrentControlSet 更改查找一. MySQL项值,然后 ...
- zencart 自定义函数
---------------------------------------------------------------------------------------------------- ...
- poi的各种单元格样式以及一些常用的配置
之前我做过一个poi到处excel数据的博客,但是,后面使用起来发现,导出的数据单元格样式都不对. 很多没有居中对齐,很多单元格的格式不对,还有就是单元格的大小不对,导致数据显示异常,虽然功能可以使用 ...
- qq客服问题
angularJs会给ng-href的不正常跳转,会 添加unsafe的前缀.原因是angular对href是有安全检查的,只能生成它认为安全的链接.解决方法如下: 在config.js中注入 fun ...
- 关于IP在MySQL中的存储
对于很多新手而言,他们总会纠结,怎样才能更好的设计MySQL数据库呢:作为一个从菜鸟走过来的人,深有体会,刚开始我也不知道什么是外键.什么是事务处理.怎样合理的定义一个字段,说到字段,今天我就带领大家 ...
- hh monitor
http://theholyjava.wordpress.com/2012/09/21/enabling-jmx-monitoring-for-hadoop-and-hive/ http://blog ...
- strictmode
最新的Android平台中(Android 2.3起),新增加了一个新的类,叫StrictMode(android.os.StrictMode).这个类可以用来帮助开发者改进他们编写的应用,并且提供了 ...
- eclipse无法导入已有android项目
问题: 今天发现我拷贝的一个android项目无法导入到eclipse,但是其它的已有android项目却可以导入 思路 现在网络这么流行,当然是上网查,得益于eclipse无法导入Android工程 ...