快速数论变换ntt。

早上才刚刚接触了一下FFT,然后就开始撸这题了,所以要详细地记录一下。

看了这篇巨巨的博客才慢慢领会的:http://blog.csdn.net/cqu_hyx/article/details/52194696

FFT的作用是计算卷积。可以简单的理解为计算多项式*多项式最后得到的多项式,暴力计算是O(n*n)的,FFT可以做到O(nlogn)。

#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<iostream>
using namespace std;
typedef long long LL;
const double pi=acos(-1.0),eps=1e-;
void File()
{
freopen("D:\\in.txt","r",stdin);
freopen("D:\\out.txt","w",stdout);
}
template <class T>
inline void read(T &x)
{
char c = getchar(); x = ;while(!isdigit(c)) c = getchar();
while(isdigit(c)) { x = x * + c - ''; c = getchar(); }
} const int maxn=;
const LL mod=;
const LL G=; LL t[maxn],a[maxn],b[maxn],c[maxn],f[maxn],fac[maxn],NI[maxn];
int T,n,m;
LL rev[maxn],N,len,inv; LL POW[maxn],NiPOW[maxn]; LL power(LL x,LL y)
{
LL res=;
for(;y;y>>=,x=(x*x)%mod)
{
if(y&)res=(res*x)%mod;
}
return res;
} void init()
{
while((n+m)>=(<<len))len++;
N=(<<len);
inv=power(N,mod-);
for(int i=;i<N;i++)
{
LL pos=;
LL temp=i;
for(int j=;j<=len;j++)
{
pos<<=;pos |= temp&;temp>>=;
}
rev[i]=pos;
}
} void ntt(LL *a,LL n,LL re)
{
for(int i=;i<n;i++)
{
if(rev[i]>i)
{
swap(a[i],a[rev[i]]);
}
}
for(int i=;i<=n;i<<=)
{
int mid=i>>; LL wn=power(G,(mod-)/i);
if(re) wn=power(wn,(mod-));
for(int j=;j<n;j+=i)
{
LL w=;
for(int k=;k<mid;k++)
{
int temp1=a[j+k];
int temp2=(LL)a[j+k+mid]*w%mod;
a[j+k]=(temp1+temp2);if(a[j+k]>=mod)a[j+k]-=mod;
a[j+k+mid]=(temp1-temp2);if(a[j+k+mid]<)a[j+k+mid]+=mod;
w=(LL)w*wn%mod;
}
}
}
if(re)
{
for(int i=;i<n;i++)
{
a[i]=(LL)a[i]*inv%mod;
}
}
} bool cmp(LL a,LL b) {return a>b;} LL extend_gcd(LL a,LL b,LL &x,LL &y)
{
if(a==&&b==) return -;
if(b==){x=;y=;return a;}
LL d=extend_gcd(b,a%b,y,x);
y-=a/b*x;
return d;
} LL mod_reverse(LL a,LL n)
{
LL x,y;
LL d=extend_gcd(a,n,x,y);
if(d==) return (x%n+n)%n;
else return -;
} int main()
{
fac[]=; for(int i=;i<=;i++) fac[i]=(LL)i*fac[i-]%mod;
for(int i=;i<=;i++) NI[i]=mod_reverse(fac[i],mod);
POW[]=; for(int i=;i<=;i++) POW[i]=(LL)*POW[i-]%mod;
for(int i=;i<=;i++) NiPOW[i]=mod_reverse(POW[i],mod); scanf("%d",&T); while(T--)
{
len=; memset(c,,sizeof c); memset(a,,sizeof a); memset(b,,sizeof b); scanf("%d",&n); m=n;
for(int i=;i<=n;i++) { int x; scanf("%d",&x); t[i]=(LL)x; } sort(t+,t++n,cmp);
for(int i=;i<n;i++)
{
LL x=fac[n]*NI[i]%mod;
a[i]=x*POW[n-i]%mod;
}
for(int i=;i<=n;i++) b[n-i]=t[i]*fac[i-]%mod; init(); ntt(a,N,); ntt(b,N,);
for(int i=;i<=N;i++) c[i]=a[i]*b[i]%mod;
ntt(c,N,); for(int i=;i<n;i++) f[n-i]=c[i]*NI[n]%mod;
for(int i=;i<=n;i++) f[i]=f[i]*NI[i-]%mod;
for(int i=;i<=n;i++) f[i]=f[i]*NiPOW[i]%mod;
LL ans=; for(int i=;i<=n;i++) { ans=(ans+f[i])%mod; printf("%lld ",ans); }
printf("\n");
}
return ;
}

HDU 5829 Rikka with Subset的更多相关文章

  1. HDU 5829 Rikka with Subset(NTT)

    题意 给定 \(n\) 个数 \(a_1,a_2,\cdots a_n\),对于每个 \(K\in[1,n]\) ,求出 \(n\) 个数的每个子集的前 \(K\) 大数的和,输出每个值,对 \(99 ...

  2. HDU 6092`Rikka with Subset 01背包变形

    Rikka with Subset Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others ...

  3. HDU 6092 Rikka with Subset

    Rikka with Subset Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others ...

  4. hdu 6092 Rikka with Subset(逆向01背包+思维)

    Rikka with Subset Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others ...

  5. 2017 ACM暑期多校联合训练 - Team 5 1008 HDU 6092 Rikka with Subset (找规律)

    题目链接 Problem Description As we know, Rikka is poor at math. Yuta is worrying about this situation, s ...

  6. hdu 6092 Rikka with Subset (集合计数,01背包)

    Problem Description As we know, Rikka is poor at math. Yuta is worrying about this situation, so he ...

  7. HDU 6092 Rikka with Subset(dp)

    http://acm.hdu.edu.cn/showproblem.php?pid=6092 题意: 给出两个数组A和B,A数组一共可以有(1<<n)种不同的集合组合,B中则记录了每个数出 ...

  8. hdu 6092 Rikka with Subset(多重背包)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6092 #include <cstdio> #include <iostream> ...

  9. HDU 6092:Rikka with Subset(dp)

    分析 很多个较小的数字可以随机组合成较大的数字,所以B数组从小到大开始遍历,除了空集,最小的那个存在的个数对应的数字必然是a数组中的数字. 每求出这一部分之后,更新后续的B序列. 分析完后,主要的难点 ...

随机推荐

  1. 在code first结构下的生成的数据迁移文件,upadate-database失败

    程序控制台出现 already exist Table "xxx",是由于项目中的Migrations(迁移文件)与连接的mysql数据库里迁移记录表里的数量及名称不一致.

  2. Java重写与重载之间的区别

    重写(Override) 重写是子类对父类的允许访问的方法的实现过程进行重新编写, 返回值和形参都不能改变.即外壳不变,核心重写! 重写的好处在于子类可以根据需要,定义特定于自己的行为. 也就是说子类 ...

  3. linux:C语言通过ICMP协议判断局域网内部主机是否存活

    ICMP协议 ICMP(Internet Control Message,网际控制报文协议)是为网关和目标主机而提供的一种差错控制机制,使它们在遇到差错时能把错误报告给报文源发方. ICMP协议是IP ...

  4. C++ unordered_map 在key为string类型和char*类型时测试时间性能差异

    测试系统liunx centos6.5 代码如下 #include <string.h> #include <sstream> #include <list> #i ...

  5. C#-实验3

    using System; using System.Collections.Generic; using System.ComponentModel; using System.Data; usin ...

  6. RubyMine 2016.1 下载 附注册激活码 破解版方法

    注册破解方法: 在要求输入注册的界面选择激活码,然后粘贴以下注册码: 43B4A73YYJ-eyJsaWNlbnNlSWQiOiI0M0I0QTczWVlKIiwibGljZW5zZWVOYW1lIj ...

  7. Java中IO流

    * IO流用来处理设备之间的数据传输 * Java对数据的操作是通过流的方式 * Java用于操作流的类都在IO包中 * 流按流向分为两种:输入流,输出流. * 流按操作类型分为两种: * 字节流 : ...

  8. 初遇locust

    大概有四个月没有用过PYTHON的我. 今天差点都不知道怎么运行了. 说起来真是丢人呐. 幸好还是存留着一点点印象,再加上看了一下以前写的几篇文章, 还是比较快的想起来了.不然真的是要崩溃了. 刚开始 ...

  9. ubuntu14通过trove/redstack安装openstack环境

    ---恢复内容开始--- Trove Installation Trove is constantly under development. The easiest way to install Tr ...

  10. Python学习笔记——基础篇【第六周】——PyYAML & configparser模块

    PyYAML模块 Python也可以很容易的处理ymal文档格式,只不过需要安装一个模块,参考文档:http://pyyaml.org/wiki/PyYAMLDocumentation 常用模块之Co ...