CF587F Duff is Mad
有趣的思想
首先暴力的话,自然是对每一个询问在\(AC\)自动机上跑一遍\(k\),看看跑出来的节点在\(fail\)树到根的路径上有多少个\(l\)到\(r\)之间的结束标记就好了
我们发现无论怎么优化好像都不是很可行,考虑一下对根号优化
对于长度大于\(\sqrt{n}\)的串,显然这样的串也不会超过\(\sqrt{n}\)个,我们把这些串在\(AC\)机上跑一遍,之后统计一下子树和,统计一个前缀和就可以回答询问了
这样复杂度是\(O(n\sqrt{n})\)
对于长度小于\(\sqrt{n}\)的串,我们允许把每一个串都放到\(AC\)自动机上跑一遍,于是可以直接用主席树来查一下跑出来的节点到根有多少个标记在\(l\)到\(r\)之间
这边的复杂度是\(O(n\sqrt{n}logn)\)
代码
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<string>
#include<vector>
#include<cmath>
#include<queue>
#define maxn 100005
#define M 4000005
#define re register
#define LL long long
#define int long long
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
inline int read() {
int x=0;char c=getchar();while(c<'0'||c>'9') c=getchar();
while(c>='0'&&c<='9') x=(x<<3)+(x<<1)+c-48,c=getchar();return x;
}
struct E{int v,nxt;}e[maxn];
struct Ask{int l,r,k,rk,o;}q[maxn];
int n,m,cnt,tot,num,sz;
int fail[maxn],son[maxn][26],len[maxn],head[maxn],a[maxn];
LL sum[maxn],pre[maxn],Ans[maxn];
int rt[maxn],ls[M],rs[M],d[M];
std::string S[maxn];
char T[maxn];
std::vector<int> v[maxn];
inline int cmp1(Ask A,Ask B) {if(A.o==B.o)return A.k<B.k;return A.o>B.o;}
inline void add(int x,int y) {e[++num].v=y;e[num].nxt=head[x];head[x]=num;}
inline void work() {for(re int i=1;i<=n;i++) pre[i]=pre[i-1]+sum[a[i]];}
inline void ins(int i) {
scanf("%s",T);
S[i]=T;len[i]=S[i].size();tot+=len[i];
int now=0;
for(re int j=0;j<S[i].size();j++) {
if(!son[now][S[i][j]-'a']) son[now][S[i][j]-'a']=++cnt;
now=son[now][S[i][j]-'a'];
}
v[now].push_back(i);a[i]=now;
}
inline void Build() {
std::queue<int> q;
for(re int i=0;i<26;i++) if(son[0][i]) q.push(son[0][i]);
while(!q.empty()) {
int k=q.front();q.pop();
for(re int i=0;i<26;i++)
if(son[k][i]) fail[son[k][i]]=son[fail[k]][i],q.push(son[k][i]);
else son[k][i]=son[fail[k]][i];
}
}
inline int change(int pre,int x,int y,int pos) {
int root=++sz;
d[root]=d[pre]+1;
if(x==y) return root;
ls[root]=ls[pre],rs[root]=rs[pre];
int mid=x+y>>1;
if(pos<=mid) ls[root]=change(ls[pre],x,mid,pos);
else rs[root]=change(rs[pre],mid+1,y,pos);
return root;
}
inline int query(int p,int x,int y,int pos) {
if(!pos) return 0;
if(x==y) return d[p];
int mid=x+y>>1;
if(pos<=mid) return query(ls[p],x,mid,pos);
return d[ls[p]]+query(rs[p],mid+1,y,pos);
}
inline void Query(int i) {
int now=0;
for(re int j=0;j<len[i];j++)
now=son[now][S[i][j]-'a'],sum[now]++;
}
inline void dfs(int x) {
for(re int i=head[x];i;i=e[i].nxt) {
dfs(e[i].v),sum[x]+=sum[e[i].v];
}
}
inline void Dfs(int x) {
for(re int i=head[x];i;i=e[i].nxt) {
rt[e[i].v]=rt[x];
for(re int j=0;j<v[e[i].v].size();j++) rt[e[i].v]=change(rt[e[i].v],1,n,v[e[i].v][j]);
Dfs(e[i].v);
}
}
signed main() {
n=read(),m=read();
for(re int i=1;i<=n;i++) ins(i);
tot=std::sqrt(tot);Build();
for(re int i=1;i<=m;i++)
q[i].l=read(),q[i].r=read(),q[i].k=read(),q[i].rk=i,q[i].o=(len[q[i].k]>tot);
std::sort(q+1,q+m+1,cmp1);
for(re int i=1;i<=cnt;i++) add(fail[i],i);
Dfs(0);
int L=1,R=1;Query(q[1].k);dfs(0),work();
for(re int i=2;i<=m+1;i++) {
if(len[q[i].k]<=tot) {for(re int j=L;j<i;j++) Ans[q[j].rk]=pre[q[j].r]-pre[q[j].l-1];R=i;break;}
if(q[i].k!=q[i-1].k) {
for(re int j=L;j<i;j++) Ans[q[j].rk]=pre[q[j].r]-pre[q[j].l-1];
memset(sum,0,sizeof(sum));
Query(q[i].k);dfs(0);work();L=i;
}
}
for(re int i=R;i<=m;i++) {
int now=0;
for(re int j=0;j<len[q[i].k];j++)
now=son[now][S[q[i].k][j]-'a'],Ans[q[i].rk]+=query(rt[now],1,n,q[i].r)-query(rt[now],1,n,q[i].l-1);
}
for(re int i=1;i<=m;i++) printf("%I64d\n",Ans[i]);
return 0;
}
CF587F Duff is Mad的更多相关文章
- [CF587F]Duff is Mad[AC自动机+根号分治+分块]
题意 给你 \(n\) 个串 \(s_{1\cdots n}\) ,每次询问给出 \(l,r,k\) ,问在 \(s_{l\cdots r}\) 中出现了多少次 \(s_k\) . \(n,q,\su ...
- CF587F Duff is Mad(AC自动机+树状数组+分块)
考虑两一个暴力 1 因为询问\([a,b]\)可以拆成\([1,b]\)-\([1,a-1]\)所以把询问离线,然后就是求\([1,x]\)中被\(S_i\)包含的串的数量.考虑当\([1,x-1]- ...
- 【CF587F】Duff is Mad AC自动机+分块
[CF587F]Duff is Mad 题意:给出n个串$s_1,s_2..s_n$,有q组询问,每次给出l,r,k,问你编号在[l,r]中的所有串在$s_k$中出现了多少次. $\sum|s_i|, ...
- Codeforces 587F - Duff is Mad(根号分治+AC 自动机+树状数组)
题面传送门 第一眼看成了 CF547E-- 话说 CF587F 和 CF547E 出题人一样欸--还有另一道 AC 自动机的题 CF696D 也是这位名叫 PrinceOfPersia 的出题人出的- ...
- CF数据结构练习
1. CF 438D The Child and Sequence 大意: n元素序列, m个操作: 1,询问区间和. 2,区间对m取模. 3,单点修改 维护最大值, 取模时暴力对所有>m的数取 ...
- cf Round 587
A.Duff and Weight Lifting(思维) 显然题目中只有一种情况可以合并 2^a+2^a=2^(a+1).我们把给出的mi排序一下,模拟合并操作即可. # include <c ...
- Lesson 21 Mad or not?
Text Aeroplanes are slowly driving me mad. I live near an airport and passing planes can be heard ni ...
- Codeforces Round #326 (Div. 2) B. Pasha and Phone C. Duff and Weight Lifting
B. Pasha and PhonePasha has recently bought a new phone jPager and started adding his friends' phone ...
- 【转】Duff's Device
在看strcpy.memcpy等的实现发现用了内存对齐,每一个word拷贝一次的办法大大提高了实现效率,参加该blog(http://totoxian.iteye.com/blog/1220273). ...
随机推荐
- 管理nginx(采用信号的方式)
启动:sbin/nginx 立即停止:sbin/nginx -s stop 平滑停止:sbin/nginx -s quit 重载配置:sbin/nginx -s reload(不会导致服务器关闭, 而 ...
- Nexus-NuGet私有仓库服务搭建(一)
搭建私有Nuget服务器的方式有很多,大多数人文章介绍在vs 中新建默认web项目,然后再Nuget 中安装 Nuget.Server,再部署到IIS 中即可.虽然能用,但是这种方式太过简陋,操作界面 ...
- request方法总结
1.获得指定的头 String header = response.getHeader("user-agent"); 2.获得所有头的名称 Enumeration<Stri ...
- shodan在渗透测试中的应用
场景1:想搜索美国所有的elasticsearch服务器 ElasticSearch是一个基于Lucene的搜索服务器.它提供了一个分布式多用户能力的全文搜索引擎,基于RESTful web接口.设计 ...
- 简述Spring及配置
简述Spring及配置 Spring最主要的思想就是IoC(Inversionof Control,控制反转),或者成为DI(Dependency Injection,依赖注入) 一.springMV ...
- hdu 1011 树形背包
http://blog.csdn.net/libin56842/article/details/9876503 这道题和poj 1155的区别是: poj1155是边的价值,所以从边的关系入手 hdu ...
- 如何让div覆盖canvas元素
第一步 请让该div和canvas同样处于同一画布,都用position:absolute; 然后设置canvas的z-index="-1",是的,你没看错 然后把要覆盖canva ...
- 如何开发一个Servlet
1 如何开发一个Servlet 1.1 步骤: 1)编写java类,继承HttpServlet类 2)重新doGet和doPost方法 3)Servlet程序交给tomcat服务器运行!! 3.1 s ...
- easyui numberbox 输入框禁止输入
{ field: 'Amount', title: '金额', width: 80, editor: { type: 'numberbox', options: { disabled: true, p ...
- eclipse 内存溢出
2011年02月22日 星期二 11:14 eclipse.exe -vmargs -Xms128M -Xmx512M -XX:PermSize=64M -XX:MaxPermSize=128M ec ...