字符串匹配是计算机的基本任务之一。

举例来说,有一个字符串"BBC ABCDAB ABCDABCDABDE",我想知道,里面是否包含另一个字符串"ABCDABD"?

许多算法可以完成这个任务,Knuth-Morris-Pratt算法(简称KMP)是最常用的之一。它以三个发明者命名,起头的那个K就是著名科学家Donald Knuth。

这种算法不太容易理解,网上有很多解释,但读起来都很费劲。直到读到Jake Boxer的文章,我才真正理解这种算法。下面,我用自己的语言,试图写一篇比较好懂的KMP算法解释。

1.

首先,字符串"BBC ABCDAB ABCDABCDABDE"的第一个字符与搜索词"ABCDABD"的第一个字符,进行比较。因为B与A不匹配,所以搜索词后移一位。

2.

因为B与A不匹配,搜索词再往后移。

3.

就这样,直到字符串有一个字符,与搜索词的第一个字符相同为止。

4.

接着比较字符串和搜索词的下一个字符,还是相同。

5.

直到字符串有一个字符,与搜索词对应的字符不相同为止。

6.

这时,最自然的反应是,将搜索词整个后移一位,再从头逐个比较。这样做虽然可行,但是效率很差,因为你要把"搜索位置"移到已经比较过的位置,重比一遍。

7.

一个基本事实是,当空格与D不匹配时,你其实知道前面六个字符是"ABCDAB"。KMP算法的想法是,设法利用这个已知信息,不要把"搜索位置"移回已经比较过的位置,继续把它向后移,这样就提高了效率。

8.

怎么做到这一点呢?可以针对搜索词,算出一张《部分匹配表》(Partial Match Table)。这张表是如何产生的,后面再介绍,这里只要会用就可以了。

9.

已知空格与D不匹配时,前面六个字符"ABCDAB"是匹配的。查表可知,最后一个匹配字符B对应的"部分匹配值"为2,因此按照下面的公式算出向后移动的位数:

  移动位数 = 已匹配的字符数 - 对应的部分匹配值

因为 6 - 2 等于4,所以将搜索词向后移动4位。

10.

因为空格与C不匹配,搜索词还要继续往后移。这时,已匹配的字符数为2("AB"),对应的"部分匹配值"为0。所以,移动位数 = 2 - 0,结果为 2,于是将搜索词向后移2位。

11.

因为空格与A不匹配,继续后移一位。

12.

逐位比较,直到发现C与D不匹配。于是,移动位数 = 6 - 2,继续将搜索词向后移动4位。

13.

逐位比较,直到搜索词的最后一位,发现完全匹配,于是搜索完成。如果还要继续搜索(即找出全部匹配),移动位数 = 7 - 0,再将搜索词向后移动7位,这里就不再重复了。

14.

下面介绍《部分匹配表》是如何产生的。

首先,要了解两个概念:"前缀"和"后缀"。 "前缀"指除了最后一个字符以外,一个字符串的全部头部组合;"后缀"指除了第一个字符以外,一个字符串的全部尾部组合。

15.

"部分匹配值"就是"前缀"和"后缀"的最长的共有元素的长度。以"ABCDABD"为例,

  - "A"的前缀和后缀都为空集,共有元素的长度为0;

  - "AB"的前缀为[A],后缀为[B],共有元素的长度为0;

  - "ABC"的前缀为[A, AB],后缀为[BC, C],共有元素的长度0;

  - "ABCD"的前缀为[A, AB, ABC],后缀为[BCD, CD, D],共有元素的长度为0;

  - "ABCDA"的前缀为[A, AB, ABC, ABCD],后缀为[BCDA, CDA, DA, A],共有元素为"A",长度为1;

  - "ABCDAB"的前缀为[A, AB, ABC, ABCD, ABCDA],后缀为[BCDAB, CDAB, DAB, AB, B],共有元素为"AB",长度为2;

  - "ABCDABD"的前缀为[A, AB, ABC, ABCD, ABCDA, ABCDAB],后缀为[BCDABD, CDABD, DABD, ABD, BD, D],共有元素的长度为0。

16.

"部分匹配"的实质是,有时候,字符串头部和尾部会有重复。比如,"ABCDAB"之中有两个"AB",那么它的"部分匹配值"就是2("AB"的长度)。搜索词移动的时候,第一个"AB"向后移动4位(字符串长度-部分匹配值),就可以来到第二个"AB"的位置。

(完)

字符串匹配KMP算法(转自阮一峰)的更多相关文章

  1. 字符串匹配KMP算法详解

    1. 引言 以前看过很多次KMP算法,一直觉得很有用,但都没有搞明白,一方面是网上很少有比较详细的通俗易懂的讲解,另一方面也怪自己没有沉下心来研究.最近在leetcode上又遇见字符串匹配的题目,以此 ...

  2. 字符串匹配KMP算法

    1. 字符串匹配的KMP算法 2. KMP算法详解 3. 从头到尾彻底理解KMP

  3. 字符串匹配--kmp算法原理整理

    kmp算法原理:求出P0···Pi的最大相同前后缀长度k: 字符串匹配是计算机的基本任务之一.举例,字符串"BBC ABCDAB ABCDABCDABDE",里面是否包含另一个字符 ...

  4. 字符串匹配KMP算法的C语言实现

    字符串匹配是计算机的基本任务之一. 举例来说,有一个字符串"BBC ABCDAB ABCDABCDABDE",我想知道,里面是否包含另一个字符串"ABCDABD" ...

  5. 字符串匹配KMP算法的讲解C++

    转自http://blog.csdn.net/starstar1992/article/details/54913261 也可以参考http://blog.csdn.net/liu940204/art ...

  6. 【Luogu P3375】字符串匹配KMP算法模板

    Luogu P3375 模式串:即题目中的S2所代表的意义 文本串:即题目中的S1所代表的意义 对于字符串匹配,有一种很显然的朴素算法:在S1中枚举起点一位一位匹配,失配之后起点往后移动一位,从头开始 ...

  7. 字符串匹配——KMP算法

    关于KMP算法的分析,我觉得这两篇博客写的不错: http://www.ruanyifeng.com/blog/2013/05/Knuth–Morris–Pratt_algorithm.html ht ...

  8. 字符串匹配—KMP算法

    KMP算法是一种改进的字符串匹配算法,由D.E.Knuth,J.H.Morris和V.R.Pratt提出的,因此人们称它为克努特-莫里斯-普拉特操作(简称KMP算法).KMP算法的核心是利用匹配失败后 ...

  9. <字符串匹配>KMP算法为何比暴力求解的时间复杂度更低?

    str表示文本串,m表示模式串; str[i+j] 和 m[j] 是正在进行匹配的字符; KMP的时间复杂度是O(m+n)  ,  暴力求解的时间复杂度是O(m*n) KMP利用了B[0:j]和A[i ...

随机推荐

  1. wms-ssv数据字典

    --------------------------------------------以下,托盘-- dbo.Container --托盘 , "托盘状态", "Con ...

  2. PDF文件比对工具

    tex/PDF对比工具讨论:https://tex.stackexchange.com/questions/65453/track-changes-in-latex 如果有源文件,直接用latexpa ...

  3. CSS学习(二)

    display :   block    inline-block    inline block此元素将显示为块级元素,此元素前后会带有换行符. inline默认.此元素会被显示为内联元素,元素前后 ...

  4. jquery.edatagrid(可编辑datagrid)的使用

    用spring+springmvc+mybatis+mysql实现简单的可编辑单元格,首先是页面效果图: 其中,“编号”列是不可编辑的,“暂缓措施”是可以自由编辑的,主要html组成: <%@ ...

  5. 数据结构--ADT

    好吧,这个没什么好讲的,写过java代码的人估计一直都在用ADT, ADT,其实就是abstract data type,抽象数据类型,额,其实他丫就是,java 的class...... 不过关于A ...

  6. 三种角度解释href/src/link/import区别

    网上查到的几种不同但比较容易理解的解释 解释一: href是Hypertext Reference的缩写,表示超文本引用.用来建立当前元素和文档之间的链接.常用的有:link.a.例如: <li ...

  7. Git 命令 操作

    常用 Git 命令清单 我每天使用 Git ,但是很多命令记不住.一般来说,日常使用只要记住下图6个命令,就可以了.但是熟练使用,恐怕要记住60-100个命令. 下面是我整理的常用 Git 命令清单. ...

  8. Linux基础之命令练习Day2-useradd(mod,del),groupadd(mod,del),chmod,chown,

    作业一: 1) 新建用户natasha,uid为1000,gid为555,备注信息为“master” 2) 修改natasha用户的家目录为/Natasha 3) 查看用户信息配置文件的最后一行 4) ...

  9. Windows系统中Oracle11g R2 版本数据库卸载

    1. 停止"服务"中所有的ORCLE服务. 进入服务的方法很多,如: (1)在运行中输入services.msc,然后找到所有跟oracle 有关的服务. (2)开始->设置 ...

  10. Android热修复 Dex注入实现静默消灭bug

    当app上线后发现紧急bug,如果重新发布版本周期比较长,并且对用户体验不好,此时热修复就派上用场了.热修复就是为紧急bug而生,能够快速修复bug,并且用户无感知.针对热修复,阿里系先后推出AndF ...