public static int lcs(String str1, String str2) {
int len1 = str1.length();
int len2 = str2.length();
int c[][] = new int[len1+1][len2+1];
for (int i = 0; i <= len1; i++) {
for( int j = 0; j <= len2; j++) {
if(i == 0 || j == 0) {
c[i][j] = 0;
} else if (str1.charAt(i-1) == str2.charAt(j-1)) {
c[i][j] = c[i-1][j-1] + 1;
} else {
c[i][j] = max(c[i - 1][j], c[i][j - 1]);
}
}
}
return c[len1][len2];
}
public class LCSProblem
{
public static void main(String[] args)
{
//保留空字符串是为了getLength()方法的完整性也可以不保留
//但是在getLength()方法里面必须额外的初始化c[][]第一个行第一列
String[] x = {"", "A", "B", "C", "B", "D", "A", "B"};
String[] y = {"", "B", "D", "C", "A", "B", "A"};
int[][] b = getLength(x, y);
Display(b, x, x.length-1, y.length-1);
}
/**
* @param x
* @param y
* @return 返回一个记录决定搜索的方向的数组
*/
public static int[][] getLength(String[] x, String[] y)
{
int[][] b = new int[x.length][y.length];
int[][] c = new int[x.length][y.length];
for(int i=1; i<x.length; i++)
{
for(int j=1; j<y.length; j++)
{
//对应第一个性质
if( x[i] == y[j])
{
c[i][j] = c[i-1][j-1] + 1;
b[i][j] = 1;
}
//对应第二或者第三个性质
else if(c[i-1][j] >= c[i][j-1])
{
c[i][j] = c[i-1][j];
b[i][j] = 0;
}
//对应第二或者第三个性质
else
{
c[i][j] = c[i][j-1];
b[i][j] = -1;
}
}
}
return b;
}
//回溯的基本实现,采取递归的方式
public static void Display(int[][] b, String[] x, int i, int j)
{
if(i == 0 || j == 0)
return;
if(b[i][j] == 1)
{
Display(b, x, i-1, j-1);
System.out.print(x[i] + " ");
}
else if(b[i][j] == 0)
{
Display(b, x, i-1, j);
}
else if(b[i][j] == -1)
{
Display(b, x, i, j-1);
}
}
}
public static int lcs(String str1, String str2) {
int len1 = str1.length();
int len2 = str2.length();
int result = 0; //记录最长公共子串长度
int c[][] = new int[len1+1][len2+1];
for (int i = 0; i <= len1; i++) {
for( int j = 0; j <= len2; j++) {
if(i == 0 || j == 0) {
c[i][j] = 0;
} else if (str1.charAt(i-1) == str2.charAt(j-1)) {
c[i][j] = c[i-1][j-1] + 1;
result = max(c[i][j], result);
} else {
c[i][j] = 0;
}
}
}
return result;
}
public class stringCompare {
//在动态规划矩阵生成方式当中,每生成一行,前面的那一行就已经没有用了,因此这里只需使用一维数组,而不是常用的二位数组
public static void getLCString(char[] str1, char[] str2) {
int len1, len2;
len1 = str1.length;
len2 = str2.length;
int maxLen = len1 > len2 ? len1 : len2;
int[] max = new int[maxLen];// 保存最长子串长度的数组
int[] maxIndex = new int[maxLen];// 保存最长子串长度最大索引的数组
int[] c = new int[maxLen];
int i, j;
for (i = 0; i < len2; i++) {
for (j = len1 - 1; j >= 0; j--) {
if (str2[i] == str1[j]) {
if ((i == 0) || (j == 0))
c[j] = 1;
else
c[j] = c[j - 1] + 1;//此时C[j-1]还是上次循环中的值,因为还没被重新赋值
} else {
c[j] = 0;
}
// 如果是大于那暂时只有一个是最长的,而且要把后面的清0;
if (c[j] > max[0]) {
max[0] = c[j];
maxIndex[0] = j;
for (int k = 1; k < maxLen; k++) {
max[k] = 0;
maxIndex[k] = 0;
}
}
// 有多个是相同长度的子串
else if (c[j] == max[0]) {
for (int k = 1; k < maxLen; k++) {
if (max[k] == 0) {
max[k] = c[j];
maxIndex[k] = j;
break; // 在后面加一个就要退出循环了
}
}
}
}
for (int temp : c) {
System.out.print(temp);
}
System.out.println();
}
//打印最长子字符串
for (j = 0; j < maxLen; j++) {
if (max[j] > 0) {
System.out.println("第" + (j + 1) + "个公共子串:");
for (i = maxIndex[j] - max[j] + 1; i <= maxIndex[j]; i++)
System.out.print(str1[i]);
System.out.println(" ");
}
}
}
public static void main(String[] args) {
String str1 = new String("binghaven");
String str2 = new String("jingseven");
getLCString(str1.toCharArray(), str2.toCharArray());
}
} /*
000000000
010000000
002000001
000300000
000000000
000000010
000000100
000000020
001000003
第1个公共子串:
ing
第2个公共子串:
ven
*/

经典算法-最长公共子序列(LCS)与最长公共子串(DP)的更多相关文章

  1. 每日一题-——最长公共子序列(LCS)与最长公共子串

    最长公共子序列(LCS) 思路: 代码: def LCS(string1,string2): len1 = len(string1) len2 = len(string2) res = [[0 for ...

  2. 最长连续公共子序列(LCS)与最长递增公共子序列(LIS)

    最长公共子序列(不连续) 实际问题中也有比较多的应用,比如,论文查重这种,就是很实际的一个使用方面. 这个应该是最常见的一种了,不再赘述,直接按照转移方程来进行: 按最普通的方式就是,直接构造二维矩阵 ...

  3. 51nod 1006 最长公共子序列Lcs(经典动态规划)

    传送门 Description 给出两个字符串A B,求A与B的最长公共子序列(子序列不要求是连续的).   比如两个串为:   abcicba abdkscab   ab是两个串的子序列,abc也是 ...

  4. 编程算法 - 最长公共子序列(LCS) 代码(C)

    最长公共子序列(LCS) 代码(C) 本文地址: http://blog.csdn.net/caroline_wendy 题目: 给定两个字符串s,t, 求出这两个字符串最长的公共子序列的长度. 字符 ...

  5. 动态规划之最长公共子序列LCS(Longest Common Subsequence)

    一.问题描述 由于最长公共子序列LCS是一个比较经典的问题,主要是采用动态规划(DP)算法去实现,理论方面的讲述也非常详尽,本文重点是程序的实现部分,所以理论方面的解释主要看这篇博客:http://b ...

  6. C++版 - Lintcode 77-Longest Common Subsequence最长公共子序列(LCS) - 题解

    版权声明:本文为博主Bravo Yeung(知乎UserName同名)的原创文章,欲转载请先私信获博主允许,转载时请附上网址 http://blog.csdn.net/lzuacm. C++版 - L ...

  7. 1006 最长公共子序列Lcs

    1006 最长公共子序列Lcs 基准时间限制:1 秒 空间限制:131072 KB 给出两个字符串A B,求A与B的最长公共子序列(子序列不要求是连续的). 比如两个串为: abcicba abdks ...

  8. POJ 1458 Common Subsequence(最长公共子序列LCS)

    POJ1458 Common Subsequence(最长公共子序列LCS) http://poj.org/problem?id=1458 题意: 给你两个字符串, 要你求出两个字符串的最长公共子序列 ...

  9. 51Nod 1006:最长公共子序列Lcs(打印LCS)

    1006 最长公共子序列Lcs  基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 给出两个字符串A B,求A与B的最长公共子序列(子序列不要求是连续的). ...

  10. 51nod 1006 最长公共子序列Lcs 【LCS/打印path】

    1006 最长公共子序列Lcs  基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 给出两个字符串A B,求A与B的最长公共子序列(子序列不要求是连续的). ...

随机推荐

  1. css常见水平居中

    行内元素居中 常见行内元素如文本,图片等居中时,通常是给父元素设置text-align:center 来实现.例如 HTML: <body> <div>我是文字,我要居中显示& ...

  2. 查看mysql binlog日志

    1.使用show binlog events a.获取binlog文件列表 mysql> show binary logs; +------------------+-----------+ | ...

  3. vijos 1426 背包+hash

    背景 北京奥运会开幕了,这是中国人的骄傲和自豪,中国健儿在运动场上已经创造了一个又一个辉煌,super pig也不例外……………… 描述 虽然兴奋剂是奥运会及其他重要比赛的禁药,是禁止服用的.但是运动 ...

  4. linux命令查看服务器的型号、序列号、内存插槽数(转)

    1,查看服务器型号.序列号: dmidecode|grep "System Information" -A9|egrep  "Manufacturer|Product|S ...

  5. Linux和windows下检查jsp后门文件的方法

    Linux下: find . -name "*.jsp" | xargs egrep -liw "createNewFile| File\(| File |applica ...

  6. os.fork()

    ret = os.fork() if ret == 0: child_suite # 子进程代码 else: parent_suite # 父进程代码 Python中的fork() 函数可以获得系统中 ...

  7. poj 1837 Balance(背包)

    题目链接:http://poj.org/problem?id=1837 Balance Time Limit: 1000MS   Memory Limit: 30000K Total Submissi ...

  8. poj 3751 时间日期格式转换

    题目链接:http://poj.org/problem?id=3751 题目大意:按照要求的格式将输入的时间日期进行转化. #include <iostream> #include < ...

  9. GBK UTF-16 UTF-8 编码表

    GBK   UTF-16 UTF-8 ================== D2BB  4E00  E4 B8 80  一 B6A1  4E01  E4 B8 81  丁 C6DF  4E03  E4 ...

  10. Java中volatile修饰符,不稳定标记的用法笔记

    今天学java特性时,发现了volatile修饰符,这个修饰符修饰的变量告诉java编译器忽略优化机制,这样的优势是: java优化后,寄存器会缓存内存里的变量,另一个线程修改这个变量的内存时,不会同 ...