树的重心,树形$dp$,背包。

树的重心有两个充分必要条件:

$1$.某树有两个重心$a$,$b$ $<=>$ $a$与$b$相邻,断开$a$与$b$之间的边之后,两个联通分量内的点的个数相同。

$2$.某树有一个重心$a$ $<=>$ 以$a$为根的树,去掉a之后,剩下的联通分量,除去节点个数最多的联通分量后,剩余的联通分量节点个数之和大于等于最大的联通分量的节点个数。

因此,可以先计算出初始树的重心,分两种情况讨论。

如果有两个重心$a$,$b$,那么,我们需要计算出断开$a$,$b$之间的边,以$a$为根的树以及以$b$为根的树中包含$x$个节点的树有几种,然后枚举$x$两边相乘求和就是答案了。

如果只有一个重心$a$,这种情况比两个重心的复杂一点,需要计算以$a$为根的树有多少种满足充要条件$2$,先要计算出以$a$的儿子为根的树中包含$x$个节点的树有几种,然后再用背包去算一下反面的情况,总的方案减去反面的就是答案。

#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<ctime>
#include<iostream>
using namespace std;
typedef long long LL;
const double pi=acos(-1.0);
void File()
{
freopen("D:\\in.txt","r",stdin);
freopen("D:\\out.txt","w",stdout);
}
template <class T>
inline void read(T &x)
{
char c = getchar();
x = ;
while(!isdigit(c)) c = getchar();
while(isdigit(c))
{
x = x * + c - '';
c = getchar();
}
} int T,n;
int mod=;
int dp[][];
int c[],mx[],k[],f[];
vector<int>tmp[],t[],zx; void init()
{
memset(dp,,sizeof dp);
memset(c,,sizeof c);
memset(mx,,sizeof mx);
memset(f,,sizeof f);
for(int i=;i<=n;i++) tmp[i].clear();
for(int i=;i<=n;i++) t[i].clear();
zx.clear();
} void D(int x)
{
f[x]=;
for(int i=;i<tmp[x].size();i++)
{
if(f[tmp[x][i]]) continue;
t[x].push_back(tmp[x][i]);
D(tmp[x][i]);
}
} void F(int x)
{
for(int i=;i<t[x].size();i++)
{
F(t[x][i]);
mx[x]=max(mx[x],c[t[x][i]]);
c[x]=c[x]+c[t[x][i]];
}
c[x]++;
} void G(int x)
{
f[x]=;
for(int i=;i<tmp[x].size();i++)
{
if(f[tmp[x][i]]) continue;
if(zx.size()==&&tmp[x][i]==zx[]) continue;
t[x].push_back(tmp[x][i]);
G(tmp[x][i]);
}
} void DP(int x)
{
dp[x][]=; int h[],g[];
memset(h,,sizeof h); memset(g,,sizeof g);
g[]=;
for(int i=;i<t[x].size();i++)
{
DP(t[x][i]);
for(int j=;j<=c[x]+c[t[x][i]];j++) h[j]=;
for(int p1=c[x];p1>=;p1--)
for(int p2=c[t[x][i]];p2>=;p2--)
h[p1+p2]=(h[p1+p2]+g[p1]*dp[t[x][i]][p2]%mod)%mod;
for(int j=;j<=c[x]+c[t[x][i]];j++) g[j]=h[j]; c[x]=c[x]+c[t[x][i]];
}
c[x]++;
for(int i=;i<=;i++) dp[x][i]=g[i-];
} int main()
{
scanf("%d",&T); int cas=;
while(T--)
{
scanf("%d",&n);
init();
for(int i=;i<=n-;i++)
{
int x,y; scanf("%d%d",&x,&y);
tmp[x].push_back(y);
tmp[y].push_back(x);
}
D(); F(); for(int i=;i<=n;i++) k[i]=max(mx[i],n-c[i]);
int mn=; for(int i=;i<=n;i++) mn=min(mn,k[i]);
for(int i=;i<=n;i++) if(k[i]==mn) zx.push_back(i); for(int i=;i<=n;i++) t[i].clear();
memset(f,,sizeof f);
G(zx[]); if(zx.size()==) G(zx[]); memset(c,,sizeof c);
DP(zx[]); if(zx.size()==) DP(zx[]); printf("Case %d: ",cas++); int ans=;
if(zx.size()==)
{
int h[],g[]; int fm=;
for(int i=;i<t[zx[]].size();i++)
{
memset(h,,sizeof h); memset(g,,sizeof g); g[]=;
int a=;
for(int j=;j<t[zx[]].size();j++)
{
if(i==j) continue;
for(int w=;w<=a+c[t[zx[]][j]];w++) h[w]=;
for(int p1=a;p1>=;p1--)
for(int p2=c[t[zx[]][j]];p2>=;p2--)
h[p1+p2]=(h[p1+p2]+g[p1]*dp[t[zx[]][j]][p2]%mod)%mod;
a=a+c[t[zx[]][j]];
for(int j=;j<=;j++) g[j]=h[j];
} for(int j=;j<=c[t[zx[]][i]];j++)
for(int w=;w<j;w++)
fm=(fm+dp[t[zx[]][i]][j]*g[w]%mod)%mod;
}
for(int i=;i<=n;i++) ans=(ans+dp[zx[]][i])%mod;
printf("%d\n",(ans-fm+mod)%mod); }
else
{
for(int i=;i<=;i++)
ans=(ans+dp[zx[]][i]*dp[zx[]][i]%mod)%mod;
printf("%d\n",ans);
} }
return ;
}

HDU 4863 Centroid of a Tree的更多相关文章

  1. hdu 4912 Paths on the tree(树链拆分+贪婪)

    题目链接:hdu 4912 Paths on the tree 题目大意:给定一棵树,和若干个通道.要求尽量选出多的通道,而且两两通道不想交. 解题思路:用树链剖分求LCA,然后依据通道两端节点的LC ...

  2. (hdu)5423 Rikka with Tree (dfs)

    题目链接:http://acm.split.hdu.edu.cn/showproblem.php?pid=5423 Problem Description As we know, Rikka is p ...

  3. 【hdu 6161】Big binary tree(二叉树、dp)

    多校9 1001 hdu 6161 Big binary tree 题意 有一个完全二叉树.编号i的点值是i,操作1是修改一个点的值为x,操作2是查询经过点u的所有路径的路径和最大值.10^5个点,1 ...

  4. HDU 6191 Query on A Tree(可持久化Trie+DFS序)

    Query on A Tree Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 132768/132768 K (Java/Othe ...

  5. hdu 5534 (完全背包) Partial Tree

    题目:这里 题意: 感觉并不能表达清楚题意,所以 Problem Description In mathematics, and more specifically in graph theory, ...

  6. 【HDU 4408】Minimum Spanning Tree(最小生成树计数)

    Problem Description XXX is very interested in algorithm. After learning the Prim algorithm and Krusk ...

  7. Hdu.1325.Is It A Tree?(并查集)

    Is It A Tree? Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) To ...

  8. hdu 1325 Is It A Tree?

    Is It A Tree? Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) To ...

  9. HDU - 5156 Harry and Christmas tree

    题目链接 : http://acm.hdu.edu.cn/showproblem.php?pid=5156 题意 : 给一颗编号为1-n的以1为根的树, 已知有m个颜色的礼物分布在某些节点上(同一节点 ...

随机推荐

  1. UVA 10214 Trees in a Wood

    https://vjudge.net/problem/UVA-10214 题意:你站在原点,每个坐标位置有一棵高度相同的树,问能看到多少棵树 ans=Σ gcd(x,y)=1 欧拉函数搞搞 #incl ...

  2. Enterprise Architect 13 : 设置默认代码环境

    设置默认代码环境: Configure -> Options -> Source Code Engineering -> Default Language For Code Gene ...

  3. CentOS 5.8 安装python 和 yum

    centos 5.8  资源路径: http://vault.centos.org/5.8/os/x86_64/CentOS/ rpm -Uvh http://vault.centos.org/5.8 ...

  4. Item 3 ------单例模式的几种实现方式,及优缺点

    单例模式,是指一个类只有一个唯一的实例,一个类只会被实例化一次.实现这种效果,最佳的方式,编写包含单个元素的枚举类型. 单例模式的最佳实现方式-----创建一个包含单个元素的枚举类 public en ...

  5. 51nod1667 概率好题

    基准时间限制:4 秒 空间限制:131072 KB 分值: 640  甲乙进行比赛. 他们各有k1,k2个集合[Li,Ri] 每次随机从他们拥有的每个集合中都取出一个数 S1=sigma甲取出的数,S ...

  6. 【BZOJ】4530: [Bjoi2014]大融合

    [题意]给定n个点的树,从无到有加边,过程中动态询问当前图某条边两端连通点数的乘积,n<=10^5. [算法]线段树合并+并查集 (||LCT(LCT维护子树信息 LCT维护子树信息(+启发式合 ...

  7. 并查集入门--畅通工程(HDU1232)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1232 畅通工程 Time Limit: 4000/2000 MS (Java/Others)    M ...

  8. bufferd对象详解

    使用buffer类处理二进制数据 在客户端javascript脚本代码中,对于二进制数据并没有提供一个很好的支持.然后在nodejs中需要处理像TCP流或文件流时,必须要处理二进制数据.因此在node ...

  9. Laravel 5.2 数据库迁移和数据填充

    一.数据库迁移 Laravel 的数据库迁移提供了对数据库.表.字段.索引的一系列相关操作.下面以创建友情链接表为例. 1. 创建迁移 使用 Artisan 命令  php artisan make: ...

  10. FreeRADIUS + MySQL 安装配置笔记

    FreeRADIUS + MySQL 安装配置笔记 https://www.2cto.com/net/201110/106597.html