内存限制:256 MiB时间限制:500 ms标准输入输出
题目类型:传统评测方式:文本比较
上传者: hzwer

题目描述

给出一个长为 nn 的数列,以及 nn 个操作,操作涉及区间乘法,区间加法,单点询问。

输入格式

第一行输入一个数字 nn。

第二行输入 nn 个数字,第 ii 个数字为 a_iai​,以空格隔开。

接下来输入 nn 行询问,每行输入四个数字 \mathrm{opt}opt、ll、rr、cc,以空格隔开。

若 \mathrm{opt} = 0opt=0,表示将位于 [l, r][l,r] 的之间的数字都加 cc。

若 \mathrm{opt} = 1opt=1,表示将位于 [l, r][l,r] 的之间的数字都乘 cc。

若 \mathrm{opt} = 2opt=2,表示询问 a_rar​ 的值 \mathop{\mathrm{mod}} 10007mod10007(ll 和 cc 忽略)。

输出格式

对于每次询问,输出一行一个数字表示答案。

样例

样例输入

7
1 2 2 3 9 3 2
0 1 3 1
2 1 3 1
1 1 4 4
0 1 7 2
1 2 6 4
1 1 6 5
2 2 6 4

样例输出

3
100

数据范围与提示

对于 100\%100% 的数据,1 \leq n \leq 100000, -2^{31} \leq \mathrm{others}1≤n≤100000,−231≤others、\mathrm{ans} \leq 2^{31}-1ans≤231−1。

这道题要开比1e5大,要不然过不去,真实测试。。。

代码:

 //#6283. 数列分块入门 7-区间乘法,区间加法,单点查询-要开1e6,mdzz
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn=1e6+; int n,m;
int a[maxn],add[maxn],mul[maxn],pos[maxn];
const int mod=; void update_add(int l,int r,int c)
{
if(pos[l]==pos[r]){
for(int i=(pos[l]-)*m+;i<=pos[l]*m;i++){
a[i]=(a[i]*mul[pos[l]]%mod+add[pos[l]]+mod)%mod;
}
for(int i=l;i<=r;i++)
a[i]=(a[i]+c+mod)%mod;
mul[pos[l]]=;add[pos[l]]=;
}
else{
for(int i=(pos[l]-)*m+;i<=pos[l]*m;i++){
a[i]=(a[i]*mul[pos[l]]%mod+add[pos[l]]+mod)%mod;
}
for(int i=l;i<=pos[l]*m;i++)
a[i]=(a[i]+c+mod)%mod;
mul[pos[l]]=;add[pos[l]]=;
for(int i=pos[l]+;i<pos[r];i++){
add[i]=(add[i]+c+mod)%mod;
}
for(int i=(pos[r]-)*m+;i<=min(pos[r]*m,n);i++){
a[i]=(a[i]*mul[pos[r]]%mod+add[pos[r]]+mod)%mod;
}
for(int i=(pos[r]-)*m+;i<=r;i++)
a[i]=(a[i]+c+mod)%mod;
mul[pos[r]]=;add[pos[r]]=;
}
} void update_mul(int l,int r,int c)
{
if(pos[l]==pos[r]){
for(int i=(pos[l]-)*m+;i<=pos[l]*m;i++){
a[i]=(a[i]*mul[pos[l]]%mod+add[pos[l]]+mod)%mod;
}
for(int i=l;i<=r;i++)
a[i]=(a[i]*c+mod)%mod;
mul[pos[l]]=;add[pos[l]]=;
}
else{
for(int i=(pos[l]-)*m+;i<=pos[l]*m;i++){
a[i]=(a[i]*mul[pos[l]]%mod+add[pos[l]]+mod)%mod;
}
for(int i=l;i<=pos[l]*m;i++)
a[i]=(a[i]*c+mod)%mod;
mul[pos[l]]=;add[pos[l]]=;
for(int i=pos[l]+;i<pos[r];i++){
add[i]=(add[i]*c+mod)%mod;
mul[i]=(mul[i]*c+mod)%mod;
}
for(int i=(pos[r]-)*m+;i<=min(pos[r]*m,n);i++){
a[i]=(a[i]*mul[pos[r]]%mod+add[pos[r]]+mod)%mod;
}
for(int i=(pos[r]-)*m+;i<=r;i++)
a[i]=(a[i]*c+mod)%mod;
mul[pos[r]]=;add[pos[r]]=;
}
} int main()
{
scanf("%d",&n);
m=sqrt(n);
for(int i=;i<=n;i++){
scanf("%d",&a[i]);
a[i]%=mod;
pos[i]=(i-)/m+;
mul[pos[i]]=;
add[pos[i]]=;
}
for(int i=;i<=n;i++){
int op,l,r,c;
scanf("%d%d%d%d",&op,&l,&r,&c);
c%=mod;
if(op==){
update_add(l,r,c);
}
else if(op==){
update_mul(l,r,c);
}
else if(op==){
printf("%d\n",(a[r]*mul[pos[r]]+add[pos[r]])%mod);
}
}
} /*
10
1 3 4 2 5 7 11 3 5 1
0 1 5 1
1 1 7 2
2 3 9 1
0 4 8 1
1 1 5 2
1 3 5 2
2 5 7 1
1 3 5 2
2 2 3 2
2 3 4 5 5
23
80
56
*/

LOJ #6283. 数列分块入门 7-分块(区间乘法、区间加法、单点查询)的更多相关文章

  1. bzoj 1798: [Ahoi2009]Seq 维护序列seq 线段树 区间乘法区间加法 区间求和

    1798: [Ahoi2009]Seq 维护序列seq Time Limit: 1 Sec  Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeO ...

  2. LOJ#6283. 数列分块入门 7

    对于每个区间先乘在加,如果我修改的是部分的块,我就需要把现这个块的add和mul标记全部放下去,然后再更新. #include<map> #include<set> #incl ...

  3. LOJ.6281.数列分块入门5(分块 区间开方)

    题目链接 int内的数(也不非得是int)最多开方4.5次就变成1了,所以还不是1就暴力,是1就直接跳过. #include <cmath> #include <cstdio> ...

  4. LibreOJ 6280 数列分块入门 4(分块区间加区间求和)

    题解:分块的区间求和比起线段树来说实在是太好写了(当然,复杂度也高)但这也是没办法的事情嘛.总之50000的数据跑了75ms左右还是挺优越的. 比起单点询问来说,区间询问和也没有复杂多少,多开一个su ...

  5. LOJ.6284.数列分块入门8(分块)

    题目链接 \(Description\) 给出一个长为n的数列,以及n个操作,操作涉及区间询问等于一个数c的元素,并将这个区间的所有元素改为c. \(Solution\) 模拟一些数据可以发现,询问后 ...

  6. LibreOJ 6281 数列分块入门 5(分块区间开方区间求和)

    题解:区间开方emmm,这马上让我想起了当时写线段树的时候,很显然,对于一个在2^31次方以内的数,开方7-8次就差不多变成一了,所以我们对于每次开方,如果块中的所有数都为一了,那么开方也没有必要了. ...

  7. LibreOJ 6277 数列分块入门 1(分块)

    题解:感谢hzwer学长和loj让本蒟蒻能够找到如此合适的入门题做. 这是一道非常标准的分块模板题,本来用打标记的线段树不知道要写多少行,但是分块只有这么几行,极其高妙. 代码如下: #include ...

  8. [Libre 6281] 数列分块入门 5 (分块)

    水一道入门分块qwq 题面:传送门 开方基本暴力.. 如果某一个区间全部都开成1或0就打上标记全部跳过就行了 因为一个数开上个四五六次就是1了所以复杂度能过233~ code: //By Menteu ...

  9. LibreOJ 6278 数列分块入门 2(分块)

     题解:非常高妙的分块,每个块对应一个桶,桶内元素全部sort过,加值时,对于零散块O(sqrt(n))暴力修改,然后暴力重构桶.对于大块直接整块加.查询时对于非完整块O(sqrt(n))暴力遍历.对 ...

随机推荐

  1. Ubuntu14.04-Python2.7-Virtualenv-Django1.9-MySQL完整环境配置

    一.安装Ubuntu14.04LTS 1.下载了ubuntu14.04后用ultraISO写到硬盘镜像(U盘) 开机启动项改成U盘在前,安装. 清空分区,重新分配. /最少10G,我放了100G. 物 ...

  2. [LeetCode] 12. Integer to Roman ☆☆

    Given an integer, convert it to a roman numeral. Input is guaranteed to be within the range from 1 t ...

  3. Beagleboneblack的MLO文件干了些啥

    Beagleboneblack在启动linux之前还有三个启动阶段: ROM code  -->  MLO  -->  u-boot --> kernel 先看看ROM code干了 ...

  4. redis.conf 配置

    daemonize yes #以后台daemon方式运行redis pidfile "/var/run/redis.pid" #redis以后台运行,默认pid文件路径/var/r ...

  5. java collection (二)

    1.集合的概念: (1)现实生活中:很多的事物凑在一起. (2)数学中的集合:具有共同属性的事物的总体. (3java 中的集合类: 是一种工具类,就像是容器,存储任意数量的具有共同属性的对象.(集合 ...

  6. 【BZOJ1272】Gate Of Babylon [Lucas][组合数][逆元]

    Gate Of Babylon Time Limit: 10 Sec  Memory Limit: 162 MB[Submit][Status][Discuss] Description Input ...

  7. 【洛谷 P3628】 [APIO2010]特别行动队 (斜率优化)

    题目链接 斜率优化总结待补,请催更.不催更不补 \[f[i]=f[j]+a*(sum[i]-sum[j])^2+b*(sum[i]-sum[j])+c\] \[=f[j]+a*sum[i]^2+a*s ...

  8. Grunt构建工具

    Grunt是javascript的构建工具,对于需要反复重复的任务,例如压缩(minification).编译.单元测试.linting等,自动化工具可以简化工作.Grunt生态系统非常庞大.你可以利 ...

  9. Python 关于拷贝(copy)汇总(列表拷贝 // 字典拷贝 // 自定义对象拷贝)

    1.列表拷贝 引用是指保存的值为对象的地址.在 Python 语言中,一个变量保存的值除了基本类型保存的是值外,其它都是引用,因此对于它们的使用就需要小心一些.下面举个例子: 问题描述:已知一个列表, ...

  10. hadoop InputFormat 类别

    FileInputFormat是所有使用文件作为数据源的InputFormat的积累.它提供两个功能:一个是定义哪些文件包含在一个作业的输入中:一个为输入文件生成分片的实现.自动将作业分块 作业分块大 ...