Description

Still remember those games we played in our childhood? Folding and cutting paper must be among the most popular ones. Clever children will always search for something new, even when they play games like cutting paper. Now, Carol, a smart girl, asks her brother Mike to solve a puzzle. However, as always, Mike cannot find the solution, therefore he turns to you for help.

Carol's puzzle is simple to state. She folds the paper in a certain manner and then uses a knife to cut through the folded paper. What Mike needs to do is to tell how many pieces the folded paper will turn into after it is cut. To eliminate the ambiguity, we can coordinate the paper as [0, 1] * [0, 1], with the coordinates of lower left corner (0, 0). A fold is denoted by two points (x1, y1) and (x2, y2) on the folding line, with which, the direction of the line is determined by from (x1, y1) to (x2, y2). Carol will always fold the paper from left to right relative to the directed line given (see Figure-1). The cut is determined by the two points on the cut line. Please note that the points given to determine the fold or the cut are not necessarily on the paper. 

Input

The first line of the input contains one integer t, the number of test cases. Then t cases follow. For each test case, the first line consists of an integer N (0 <= N <= 20), the number of folds, and the following N lines give two points on each fold line as x1, y1, x2, y2. The following line gives two points on the cut line in the same way.

Output

For each test case, output one line containing the number of pieces the paper will turn into after the cut.
 
题目大意:给一张正方形的纸,沿给出的n条线折叠n次,然后沿一条线切开,问切开后有多少张纸。(估计在折痕上切也可以把折痕切开)
主要是要理解上面所说的 本质不同的点。所谓本质不同的点,包括有两点虽然拥有同一个坐标,但是它们实际上是这张纸不同的点。
还有上面没有提到的,关于切割的时候,再折叠一次再切。
 
PS:好难……
 
代码(16MS):
 #include <cstdio>
#include <algorithm>
#include <cstring>
#include <iostream>
#include <cmath>
#include <vector>
#include <map>
using namespace std;
typedef long long LL;
typedef pair<int, int> PII; const double PI = acos(-1.0);
const double EPS = 1e-; inline int sgn(double x) {
return (x > EPS) - (x < -EPS);
} struct Point {
double x, y;
Point() {}
Point(double x, double y): x(x), y(y) {}
void read() {
scanf("%lf%lf", &x, &y);
}
Point operator + (const Point &rhs) const {
return Point(x + rhs.x, y + rhs.y);
}
Point operator - (const Point &rhs) const {
return Point(x - rhs.x, y - rhs.y);
}
Point operator * (double t) const {
return Point(x * t, y * t);
}
double length() const {
return sqrt(x * x + y * y);
}
Point unit() const {
double l = length();
return Point(x / l, y / l);
}
}; double dist(const Point &p1, const Point &p2) {
return (p1 - p2).length();
} Point rotate(const Point &p, double angle, const Point &o = Point(, )) {
Point t = p - o;
double x = t.x * cos(angle) - t.y * sin(angle);
double y = t.y * cos(angle) + t.x * sin(angle);
return Point(x, y) + o;
} double cross(const Point &a, const Point &b) {
return a.x * b.y - a.y * b.x;
} double cross(const Point &sp, const Point &ep, const Point &op) {
return cross(sp - op, ep - op);
} struct Seg {
Point st, ed;
Seg() {}
Seg(Point st, Point ed): st(st), ed(ed) {}
void read() {
st.read(); ed.read();
}
};
typedef Seg Line;
//return Ax + By + C =0 's A, B, C
void Coefficient(const Line &L, double &A, double &B, double &C) {
A = L.ed.y - L.st.y;
B = L.st.x - L.ed.x;
C = L.ed.x * L.st.y - L.st.x * L.ed.y;
}
//point of intersection
Point operator * (const Line &a, const Line &b) {
double A1, B1, C1;
double A2, B2, C2;
Coefficient(a, A1, B1, C1);
Coefficient(b, A2, B2, C2);
Point I;
I.x = - (B2 * C1 - B1 * C2) / (A1 * B2 - A2 * B1);
I.y = (A2 * C1 - A1 * C2) / (A1 * B2 - A2 * B1);
return I;
} double Point_to_Line(const Point &p, const Line &L) {
return fabs(cross(p, L.st, L.ed)/dist(L.st, L.ed));
} Point reflection(const Point &p, const Line &l) {
Point t = rotate(l.ed - l.st, -PI / );
return p + t.unit() * ( * Point_to_Line(p, l));
} vector<Point> p_vec, p_buf; struct Poly {
vector<int> id;
void add(int i) {
id.push_back(i);
}
Point& operator [] (int i) const {
return p_vec[id[i]];
}
}; vector<Poly> pol_vec, pol_buf;
map<PII, int> edge_map; Point paper[] = {Point(, ), Point(, ), Point(, ), Point(, )}; void reflection(const Poly &pol, const Line &l) {
for(int i = ; i < int(pol.id.size()); ++i)
if(pol.id[i] < int(p_buf.size())) p_buf[pol.id[i]] = reflection(pol[i], l);
} int intersection(int id1, int id2, const Point &p1, const Point &p2) {
map<PII, int>::iterator it = edge_map.find(make_pair(id1, id2));
if(it == edge_map.end()) {
p_vec.push_back(Line(p_vec[id1], p_vec[id2]) * Line(p1, p2));
edge_map[make_pair(id1, id2)] = edge_map[make_pair(id1, id2)] = p_vec.size() - ;
return p_vec.size() - ;
} else return it->second;
} void fold(const Point &p1, const Point &p2, const Poly &pol) {
Poly res1, res2;
int last_s = sgn(cross(p1, pol[], p2));
for(int i = ; i < int(pol.id.size()); ++i) {
int now_s = sgn(cross(p1, pol[i], p2));
if(now_s == ) {
res1.add(pol.id[i]);
res2.add(pol.id[i]);
} else if(now_s < ) {
if(last_s > ) {
int k = intersection(pol.id[i - ], pol.id[i], p1, p2);
res1.add(k);
res2.add(k);
}
res1.add(pol.id[i]);
} else if(now_s > ) {
if(last_s < ) {
int k = intersection(pol.id[i - ], pol.id[i], p1, p2);
res1.add(k);
res2.add(k);
}
res2.add(pol.id[i]);
}
last_s = now_s;
}
if(res1.id.size() > ) {
res1.add(res1.id[]);
reflection(res1, Line(p1, p2));
reverse(res1.id.begin(), res1.id.end());
pol_buf.push_back(res1);
}
if(res2.id.size() > ) {
res2.add(res2.id[]);
pol_buf.push_back(res2);
}
} void fold(const Point &p1, const Point &p2) {
p_buf = p_vec;
edge_map.clear();
pol_buf.clear();
for(int i = ; i < int(pol_vec.size()); ++i)
fold(p1, p2, pol_vec[i]);
pol_vec = pol_buf;
for(int i = ; i < int(p_buf.size()); ++i)
p_vec[i] = p_buf[i];
} void dfs(vector<bool> &vis, int id, const Line &l) {
vis[id] = true;
Poly &pol = pol_vec[id];
for(int i = ; i < int(pol.id.size() - ); ++i) {
if(sgn(cross(l.ed, pol[i], l.st)) == && sgn(cross(l.ed, pol[i + ], l.st)) == ) continue;
int id1 = pol.id[i], id2 = pol.id[i + ];
for(int j = ; j < int(pol_vec.size()); ++j) {
if(vis[j]) continue;
for(int k = ; k < int(pol_vec[j].id.size() - ); ++k) {
if(pol_vec[j].id[k] == id1 && pol_vec[j].id[k + ] == id2) {
dfs(vis, j, l);
break;
}
}
}
}
} int cut(const Line &l) {
int ret = ;
vector<bool> vis(p_vec.size());
for(int i = ; i < int(pol_vec.size()); ++i) {
if(!vis[i]) {
dfs(vis, i, l);
++ret;
}
}
return ret;
} int main() {
int T;
scanf("%d", &T);
Poly init_pol;
for(int i = ; i <= ; ++i) init_pol.add(i & );
while(T--) {
int n;
scanf("%d", &n);
p_vec.clear();
pol_vec.clear();
for(int i = ; i < ; ++i) p_vec.push_back(paper[i]);
for(int i = ; i <= ; ++i) pol_vec.push_back(init_pol);
Point p1, p2;
for(int i = ; i <= n; ++i) {
p1.read(), p2.read();
fold(p1, p2);
}
printf("%d\n", cut(Line(p1, p2)));
}
}

POJ 1921 Paper Cut(计算几何の折纸问题)的更多相关文章

  1. 【BZOJ】1074: [SCOI2007]折纸origami

    http://www.lydsy.com/JudgeOnline/problem.php?id=1074 题意:一开始有一个左上角是(0,100),右下角是(100,0)的纸片,现在可以沿有向直线折n ...

  2. 1074: [SCOI2007]折纸origami

    Time Limit: 20 Sec  Memory Limit: 162 MBSubmit: 372  Solved: 229[Submit][Status][Discuss] Descriptio ...

  3. 【题解】折纸 origami [SCOI2007] [P4468] [Bzoj1074]

    [题解]折纸 origami [SCOI2007] [P4468] [Bzoj1074] 传送门:折纸 \(\text{origami [SCOI2007] [P4468]}\) \(\text{[B ...

  4. CSS3写折纸

    <!DOCTYPE HTML> <html> <head> <meta http-equiv="Content-Type" content ...

  5. 折纸问题java实现

    /** * 折纸问题 这段代码写的太low了 本人水平有限 哎... 全是字符串了 * @param n * @return * @date 2016-10-7 * @author shaobn */ ...

  6. 1074: [SCOI2007]折纸origami - BZOJ

    Description 桌上有一张边界平行于坐标轴的正方形纸片,左下角的坐标为(0,0),右上角的坐标为(100,100).接下来执行n条折纸命令.每条命令用两个不同点P1(x1,y1)和P2(x2, ...

  7. CSS3实现文字折纸效果

    CSS3实现文字折纸效果 效果图: 代码如下,复制即可使用: <!DOCTYPE html> <html> <head> <title></tit ...

  8. UVA 177 PaperFolding 折纸痕 (分形,递归)

    著名的折纸问题:给你一张很大的纸,对折以后再对折,再对折……每次对折都是从右往左折,因此在折了很多次以后,原先的大纸会变成一个窄窄的纸条.现在把这个纸条沿着折纸的痕迹打开,每次都只打开“一半”,即把每 ...

  9. ZR#955 折纸

    ZR#955 折纸 解法: 可以发现折纸之后被折到上面的部分实际上是没有用的,因为他和下面对应位置一定是一样的,而影响答案的只有每个位置的颜色和最底层的坐标范围.因此,我们只需要考虑最底层即可,即我们 ...

随机推荐

  1. ssh登录等待时间超时问题的解决

    最近使用ssh登录服务器时,发现许多服务器会报告等待时间超时的错误,通过网上查找发现是由于ssh中的配置中开启了DNS反查的功能,导致在反查过程中消耗了很长的时间,现将解决方法总结如下: 使用root ...

  2. ubuntu下安装memcached和PHP的memcache扩展

    依赖包和软件包下载地址: Libevent:https://github.com/libevent/libevent/releases/download/release-2.1.8-stable/li ...

  3. Linux系统结构 详解(转)

    Linux系统一般有4个主要部分: 内核.shell.文件系统和应用程序.内核.shell和文件系统一起形成了基本的操作系统结构,它们使得用户可以运行程序.管理文件并使用系统.部分层次结构如图1-1所 ...

  4. SQL Server 2012 - 数据更新操作

    SELECT * FROM dbo.Student; --1, 插入数据 Insert ,逗号分隔可以同时插入多条 INSERT dbo.Student ( StuID, Class, StuName ...

  5. Maven DebugConfiguration配置运行内存

    -Xms256M -Xmx512M -XX:PermSize=256m -XX:MaxPermSize=512m

  6. 本人擅长Ai、Fw、Fl、Br、Ae、Pr、Id、Ps等

    本人擅长Ai.Fw.Fl.Br.Ae.Pr.Id.Ps等软件的安装与卸载,精通CSS.JavaScript.PHP.ASP.C.C++.C#.Java.Ruby.Perl.Lisp.python.Ob ...

  7. git找回本地误删的文件或文件夹

    一:首先,我们先用git status 看看工作区的变化 application/Admin/Conf/config.php 如果要恢复文件记住这个 application 如果要恢复文件夹记住这个工 ...

  8. [Doctrine Migrations] 数据库迁移组件的深入解析三:自定义数据字段类型

    自定义type 根据官方文档,新建TinyIntType类,集成Type,并重写getName,getSqlDeclaration,convertToPHPValue,getBindingType等方 ...

  9. 应用性能管理(APM, Application Performance Management)

    当下成熟的互联网公司都建立有从基础设施到应用程序的全方位监控系统,力求及时发现故障进行处理并为优化程序提供性能数据支持,降低整体运维成本.国内外商业的APM有Compuware.iMaster.博睿B ...

  10. python 解积分方程

    引用:https://www.aliyun.com/jiaocheng/527786.html sympy求解极限.积分.微分.二元一次方程:http://www.gzhshoulu.wang/art ...