UOJ228:基础数据结构练习题——题解
参考:https://www.cnblogs.com/ljh2000-jump/p/6357583.html
考虑当整个区间的最大值开方==最小值开方(实质上就是区间开完方后所有数都相等),那么我们开一次方就可以了。
听说有证明如果达到上面的那种情况的话最多需要操作O(lg^2)次,那么复杂度就是O(n*lg^3)了。
实际上开方只是起到了一个缩小最大值和最小值差值的作用,当差值缩小为0时就是我们所想要的那种情况。
但是也有极端数据比如898989,开完方变成343434……无限下去你就会发现无论怎么开所有的数都会差1,复杂度瞬间被艹。
对于这种极端数据实际上只是进行了一次区间减,我们特判之就能保证复杂度了。
另外为了减少代码编写难度,采用了参考的那种只有当最大值==最小值才开方的写法,虽然最好情况下复杂度会增加,但是最坏情况复杂度并没有增加,所以没有问题。
#include<map>
#include<cmath>
#include<stack>
#include<queue>
#include<cstdio>
#include<cctype>
#include<vector>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
const int N=1e5+;
inline ll read(){
ll X=,w=;char ch=;
while(!isdigit(ch)){w|=ch=='-';ch=getchar();}
while(isdigit(ch))X=(X<<)+(X<<)+(ch^),ch=getchar();
return w?-X:X;
}
int n,m;
ll b[N],sum[N*],ad[N*],maxn[N*],minn[N*];
inline void mdy(int a,int l,int r,ll w){
sum[a]+=w*(r-l+);
maxn[a]+=w;minn[a]+=w;
ad[a]+=w;
}
inline void upt(int a,int l,int r){
int ls=a<<,rs=a<<|;
sum[a]=sum[ls]+sum[rs]+ad[a]*(r-l+);
maxn[a]=max(maxn[ls],maxn[rs])+ad[a];
minn[a]=min(minn[ls],minn[rs])+ad[a];
}
void build(int a,int l,int r){
if(l==r){
sum[a]=maxn[a]=minn[a]=b[l];
return;
}
int mid=(l+r)>>;
build(a<<,l,mid);build(a<<|,mid+,r);
upt(a,l,r);
}
void seg_add(int a,int l,int r,int l1,int r1,ll w){
if(r<l1||r1<l)return;
if(l1<=l&&r<=r1){
mdy(a,l,r,w);
return;
}
int mid=(l+r)>>;
seg_add(a<<,l,mid,l1,r1,w);seg_add(a<<|,mid+,r,l1,r1,w);
upt(a,l,r);
}
void seg_sqrt(int a,int l,int r,int l1,int r1,ll w){
if(r<l1||r1<l)return;
if(l1<=l&&r<=r1){
ll delta,c1=sqrt(minn[a]+w),c2=sqrt(maxn[a]+w);
if(maxn[a]==minn[a]){
delta=minn[a]+w-(ll)sqrt(minn[a]+w);
mdy(a,l,r,-delta);
return;
}else if(minn[a]+==maxn[a]&&c1+==c2){
delta=minn[a]+w-(ll)sqrt(minn[a]+w);
mdy(a,l,r,-delta);
return;
}
}
int mid=(l+r)>>;w+=ad[a];
seg_sqrt(a<<,l,mid,l1,r1,w);seg_sqrt(a<<|,mid+,r,l1,r1,w);
upt(a,l,r);
}
ll query(int a,int l,int r,int l1,int r1,ll w){
if(r<l1||r1<l)return ;
if(l1<=l&&r<=r1)return sum[a]+w*(r-l+);
int mid=(l+r)>>;w+=ad[a];
return query(a<<,l,mid,l1,r1,w)+query(a<<|,mid+,r,l1,r1,w);
}
int main(){
n=read(),m=read();
for(int i=;i<=n;i++)b[i]=read();
build(,,n);
while(m--){
int op=read(),x=read(),y=read();
if(op==)seg_add(,,n,x,y,read());
if(op==)seg_sqrt(,,n,x,y,);
if(op==)printf("%lld\n",query(,,n,x,y,));
}
return ;
}
+++++++++++++++++++++++++++++++++++++++++++
+本文作者:luyouqi233。 +
+欢迎访问我的博客:http://www.cnblogs.com/luyouqi233/+
+++++++++++++++++++++++++++++++++++++++++++
UOJ228:基础数据结构练习题——题解的更多相关文章
- uoj228 基础数据结构练习题
趁别人题解没有放出来赶快写一篇 整数序列,操作 区间加 区间变成sqrt(下取整) 区间和 考虑一下对于每个区间里所有sqrt不同的段操作,那么可以在O(段数logn)一次的时间内完成sqrt操作.考 ...
- [UOJ228] 基础数据结构练习题 - 线段树
考虑到一个数开根号 \(loglog\) 次后就会变成1,设某个Node的势能为 \(loglog(maxv-minv)\) ,那么一次根号操作会使得势能下降 \(1\) ,一次加操作最多增加 \(l ...
- 【UOJ228】基础数据结构练习题(线段树)
[UOJ228]基础数据结构练习题(线段树) 题面 UOJ 题解 我们来看看怎么开根? 如果区间所有值都相等怎么办? 显然可以直接开根 如果\(max-sqrt(max)=min-sqrt(min)\ ...
- 【UOJ#228】基础数据结构练习题 线段树
#228. 基础数据结构练习题 题目链接:http://uoj.ac/problem/228 Solution 这题由于有区间+操作,所以和花神还是不一样的. 花神那道题,我们可以考虑每个数最多开根几 ...
- uoj #228. 基础数据结构练习题 线段树
#228. 基础数据结构练习题 统计 描述 提交 自定义测试 sylvia 是一个热爱学习的女孩子,今天她想要学习数据结构技巧. 在看了一些博客学了一些姿势后,她想要找一些数据结构题来练练手.于是她的 ...
- 【线段树】uoj#228. 基础数据结构练习题
get到了标记永久化 sylvia 是一个热爱学习的女孩子,今天她想要学习数据结构技巧. 在看了一些博客学了一些姿势后,她想要找一些数据结构题来练练手.于是她的好朋友九条可怜酱给她出了一道题. 给出一 ...
- 【uoj228】 基础数据结构练习题
http://uoj.ac/problem/228 (题目链接) 题意 给出一个序列,维护区间加法,区间开根,区间求和 Solution 线段树.考虑区间开根怎么做.当区间的最大值与最小值相等时,我们 ...
- uoj228:基础数据结构练习题
题意:http://uoj.ac/problem/228 sol :线段树开根操作 对于节点x,可以在max[x]-min[x]<=1时直接做,转化为区间减或区间覆盖 #include< ...
- 【UOJ#228】 基础数据结构练习题
题目描述 sylvia 是一个热爱学习的女孩子,今天她想要学习数据结构技巧. 在看了一些博客学了一些姿势后,她想要找一些数据结构题来练练手.于是她的好朋友九条可怜酱给她出了一道题. 给出一个长度为 n ...
随机推荐
- 你想找的Python资料这里全都有!没有你找不到!史上最全资料合集
你想找的Python资料这里全都有!没有你找不到!史上最全资料合集 2017年11月15日 13:48:53 技术小百科 阅读数:1931 GitHub 上有一个 Awesome - XXX 系列 ...
- create-react-app创建react项目 css模块化处理
用的css预处理器用sass,其他大同小异. 用create-react-app创建项目,执行npm run eject弹出配置文件(此操作不可逆): 配置sass,用的最新的CRA,webpack4 ...
- QXDM及QCAT软件使用入门指南V1.0
链接:https://pan.baidu.com/s/1i55YXnf 密码:v6nw
- 使用InstallShield-Limited-Edition制作安装包
1.打开此网站,进行注册,获取序列码以及下载InstallShield-Limited-Edition 2.安装完成之后,打开VisualStudio,新建项目 3.填写基本应用信息 4.配置相关信息 ...
- leetcode-打家劫舍(动态规划)
你是一个专业的小偷,计划偷窃沿街的房屋.每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警. 给定一个代表每 ...
- Period :KMP
I - Period Problem Description For each prefix of a given string S with N characters (each character ...
- Error: Could not find or load main class org.apache.hadoop.mapreduce.v2.app.MRAppMaster
自己搭建了一套伪分布的大数据环境,运行Hadoop包中自带的示例时,出现如下错误: 错误: 找不到或无法加载主类 org.apache.hadoop.mapreduce.v2.app.MRAppMas ...
- struts2之form标签theme属性详解
struts2中theme属性包括xhtml,html,simple,ajax .默认是xhtml theme:设置struts2标签的主题,默认为xhtml. theme=xhtml时:会默认额外生 ...
- 1.linux环境配置
首先说一下,这里是虚拟机环境. 1.用vbox安装centos6.8-mini 注意不要使用复制的方式安装,复制的虚拟机网络不通 安装如下: 主机 ip 角色 内存 hadoop1 192.168.0 ...
- JavaScript中的事件代理/委托
事件委托在JS高级程序设计中的定义为"利用事件冒泡,只指定一个事件处理程序,就可以管理某一类型的所有事件" 如何理解上面的这句话呢,在网上,大牛们一般都使用收快递这个例子来解释的, ...