CF916E Jamie and Tree 解题报告
CF916E Jamie and Tree
题意翻译
有一棵\(n\)个节点的有根树,标号为\(1-n\),你需要维护一下三种操作
1.给定一个点\(v\),将整颗树的根变为\(v\)
2.给定两个点\(u, v\),将\(lca(u, v)\)所在的子树都加上\(x\)
3.给定一个点\(v\),你需要回答以\(v\)所在的子树的权值和
输入输出格式
输入格式:
The first line of input contains two space-separated integers \(n\) and \(q\) \((1<=n<=10^{5},1<=q<=10^{5})\) — the number of vertices in the tree and the number of queries to process respectively.
The second line contains \(n\) space-separated integers\(a_{1},a_{2},...,a_{n}\)(\(-10^{8}<=a_{i}<=10^{8}\)) — initial values of the vertices.
Next \(n-1\) lines contains two space-separated integers\(u_{i},v_{i}\)(\(1<=u_{i},v_{i}<=n\)) describing edge between vertices \(u_{i}\)and \(v_{i}\)in the tree.
The following \(q\) lines describe the queries.
Each query has one of following formats depending on its type:
\(1\ v\) ( \(1<=v<=n\) ) for queries of the first type.
\(2\ u\ v\ x\) ( \(1<=u,v<=n,-10^{8}<=x<=10^{8}\) ) for queries of the second type.
\(3\ v ( 1<=v<=n )\) for queries of the third type.
All numbers in queries' descriptions are integers.
The queries must be carried out in the given order. It is guaranteed that the tree is valid.
输出格式:
For each query of the third type, output the required answer. It is guaranteed that at least one query of the third type is given by Jamie.
强制换根==分类讨论
如果在考场上比较难写就考虑暴力吧
首先介绍几点可能比较常见的
1.换根后的\(lca(u,v)\)
其实求法比较多,介绍一种
设\(z1=lca(u,root),z2=lca(v,root)\),如果\(z1==z2\),则\(lca(u,v)\)不变,否则\(lca(u,v)\)为\(z1,z2\)中深度较深的那个
2.一个点是否在某点的子树里
bool in(int x)
{
if(dfn[x]>=dfn[root]&&dfn[x]<=dfn[root]+siz[root]-1) return true;
return false;
}
对于这道题,我们在分类讨论上稍稍用一点容斥原理即可
Code:
#include <cstdio>
#define ll long long
#define ls id<<1
#define rs id<<1|1
const int N=100010;
int head[N],to[N<<1],Next[N<<1],cnt;
void add(int u,int v)
{
to[++cnt]=v;Next[cnt]=head[u];head[u]=cnt;
}
int f[N][20],dfn[N],dep[N],siz[N],ha[N],dfs_clock,root;
void dfs(int now)
{
dfn[now]=++dfs_clock;
ha[dfs_clock]=now;
siz[now]++;
for(int i=head[now];i;i=Next[i])
{
int v=to[i];
if(f[now][0]!=v)
{
dep[v]=dep[now]+1;
f[v][0]=now;
dfs(v);
siz[now]+=siz[v];
}
}
}
ll sum[N<<2],lazy[N<<2],dat[N];
int n,q;
void updata(int id)
{
sum[id]=sum[ls]+sum[rs];
}
void push_down(int id,ll L,ll R)
{
if(!lazy[id]) return;
if(L!=R)
{
ll mid=L+R>>1;
sum[ls]+=(mid+1-L)*lazy[id];
sum[rs]+=(R-mid)*lazy[id];
lazy[ls]+=lazy[id];
lazy[rs]+=lazy[id];
}
lazy[id]=0;
}
void build(int id,int l,int r)
{
if(l==r)
{
sum[id]=dat[ha[l]];
return;
}
int mid=l+r>>1;
build(ls,l,mid);
build(rs,mid+1,r);
updata(id);
}
void change(int id,ll l,ll r,ll L,ll R,ll delta)
{
push_down(id,L,R);
if(l==L&&r==R)
{
sum[id]+=(R+1-L)*delta;
lazy[id]+=delta;
return;
}
ll mid=L+R>>1;
if(r<=mid) change(ls,l,r,L,mid,delta);
else if(l>mid) change(rs,l,r,mid+1,R,delta);
else change(ls,l,mid,L,mid,delta),change(rs,mid+1,r,mid+1,R,delta);
updata(id);
}
ll query(int id,ll l,ll r,ll L,ll R)
{
push_down(id,L,R);
if(l==L&&r==R) return sum[id];
ll mid=L+R>>1;
if(r<=mid) return query(ls,l,r,L,mid);
else if(l>mid) return query(rs,l,r,mid+1,R);
else return query(ls,l,mid,L,mid)+query(rs,mid+1,r,mid+1,R);
}
void init()
{
scanf("%d%d",&n,&q);
for(int i=1;i<=n;i++) scanf("%lld",dat+i);
for(int u,v,i=1;i<n;i++)
{
scanf("%d%d",&u,&v);
add(u,v),add(v,u);
}
dep[1]=1;
dfs(root=1);
for(int j=1;j<=18;j++)
for(int i=1;i<=n;i++)
f[i][j]=f[f[i][j-1]][j-1];
build(1,1,n);
}
void Swap(int &x,int &y)
{
int tmp=x;
x=y;
y=tmp;
}
int LCA0(int x,int y)//原树的LCA
{
if(dep[x]<dep[y]) Swap(x,y);
for(int i=18;~i;i--)
if(dep[f[x][i]]>=dep[y])
x=f[x][i];
if(x==y) return x;
for(int i=18;~i;i--)
if(f[x][i]!=f[y][i])
x=f[x][i],y=f[y][i];
return f[x][0];
}
int LCA(int x,int y)//换根后的LCA
{
int z1=LCA0(x,root),z2=LCA0(y,root);
if(z1==z2) return LCA0(x,y);
else return dep[z1]>dep[z2]?z1:z2;
}
bool in(int x)//询问x是否在以root为根的子树里
{
if(dfn[x]>=dfn[root]&&dfn[x]<=dfn[root]+siz[root]-1) return true;
return false;
}
int querys(int x)//询问根到x位置上x的那个儿子
{
int y=root;
for(int i=18;~i;i--)
if(dep[f[y][i]]>dep[x])
y=f[y][i];
return y;
}
void modify(int x,ll delta)//给以x为根的子树加上delta
{
if(in(x))
{
if(x!=root) change(1,dfn[x],dfn[x]+siz[x]-1,1,n,delta);
else change(1,1,n,1,n,delta);
return;
}
int son=querys(x);
if(f[son][0]==x)
{
change(1,1,n,1,n,delta);
change(1,dfn[son],dfn[son]+siz[son]-1,1,n,-delta);
}
else
change(1,dfn[x],dfn[x]+siz[x]-1,1,n,delta);
}
ll ask(int x)//询问新根下子树权值和
{
if(in(x))
{
if(x!=root) return query(1,dfn[x],dfn[x]+siz[x]-1,1,n);
return query(1,1,n,1,n);
}
int son=querys(x);
ll ans=0;
if(f[son][0]==x)
{
ans+=query(1,1,n,1,n);
ans-=query(1,dfn[son],dfn[son]+siz[son]-1,1,n);
}
else
ans=query(1,dfn[x],dfn[x]+siz[x]-1,1,n);
return ans;
}
void work()
{
ll x;
for(int opt,u,v,i=1;i<=q;i++)
{
scanf("%d",&opt);
if(opt==1)
{
scanf("%d",&u);
root=u;
}
else if(opt==2)
{
scanf("%d%d%lld",&u,&v,&x);
modify(LCA(u,v),x);
}
else
{
scanf("%d",&u);
printf("%lld\n",ask(u));
}
}
}
int main()
{
init();
work();
return 0;
}
2018.7.31
CF916E Jamie and Tree 解题报告的更多相关文章
- CF916E Jamie and Tree
CF916E Jamie and Tree 题意翻译 有一棵n个节点的有根树,标号为1-n,你需要维护以下三种操作 1.给定一个点v,将整颗树的根变为v 2.给定两个点u, v,将lca(u, v)所 ...
- 【LeetCode】863. All Nodes Distance K in Binary Tree 解题报告(Python)
[LeetCode]863. All Nodes Distance K in Binary Tree 解题报告(Python) 作者: 负雪明烛 id: fuxuemingzhu 个人博客: http ...
- 【LeetCode】297. Serialize and Deserialize Binary Tree 解题报告(Python)
[LeetCode]297. Serialize and Deserialize Binary Tree 解题报告(Python) 标签: LeetCode 题目地址:https://leetcode ...
- 【LeetCode】331. Verify Preorder Serialization of a Binary Tree 解题报告(Python)
[LeetCode]331. Verify Preorder Serialization of a Binary Tree 解题报告(Python) 标签: LeetCode 题目地址:https:/ ...
- 【LeetCode】109. Convert Sorted List to Binary Search Tree 解题报告(Python)
[LeetCode]109. Convert Sorted List to Binary Search Tree 解题报告(Python) 标签(空格分隔): LeetCode 作者: 负雪明烛 id ...
- 【LeetCode】236. Lowest Common Ancestor of a Binary Tree 解题报告(Python)
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 日期 题目地址:https://leetcode.c ...
- 【LeetCode】99. Recover Binary Search Tree 解题报告(Python)
[LeetCode]99. Recover Binary Search Tree 解题报告(Python) 标签(空格分隔): LeetCode 题目地址:https://leetcode.com/p ...
- 【LeetCode】662. Maximum Width of Binary Tree 解题报告(Python)
[LeetCode]662. Maximum Width of Binary Tree 解题报告(Python) 标签(空格分隔): LeetCode 题目地址:https://leetcode.co ...
- 【LeetCode】623. Add One Row to Tree 解题报告(Python)
[LeetCode]623. Add One Row to Tree 解题报告(Python) 标签(空格分隔): LeetCode 题目地址:https://leetcode.com/problem ...
随机推荐
- hdu1257最少拦截系统(暴力)
最少拦截系统 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Subm ...
- selenium,unittest——两个class连续运行
将多个class放在一个文件内一起运行,这是一个多用例不同网站进行测试的方法 #encoding=utf-8from selenium import webdriverimport time,unit ...
- Python元组与列表的区别和联系?
1. 元组和列表比较相似,不过它们之间也有着不同: (1)列表:一个大仓库,你可以随时往里边添加和删除任何东西. (2)元组:封闭的列表,一旦定义,就不可改变(不能添加.删除或修改). 2. 什么情 ...
- mysql 各种存储引擎的特点
- css多行文本溢出显示省略号(…)
text-overflow:ellipsis属性可以实现单行文本的溢出显示省略号(…).但部分浏览器还需要加宽度width属性. css代码: overflow: hidden; text-overf ...
- javascript对table的添加,删除行的操作
<body> <form name="myForm"> <table width="100%" id="tab" ...
- 一:yarn 介绍
yarn的了出现主要是为了拆分jobtracker的两个核心功能:资源管理和任务监控,分别对应resouceManager(RM)和applicationManager(AM).yarn中的任 ...
- 第二十次ScrumMeeting会议
第二十次Scrum Meeting 时间:2017/12/10 地点:新主楼1039 人员:蔡帜 王子铭 游心 解小锐 王辰昱 李金奇 杨森 陈鑫 赵晓宇 照片: 目前工作进展 名字 今日 明天的工作 ...
- 系统常量对话框QT实现
1.运行结果: 2.代码 main.cpp #include "constantdiag.h" #include <QtWidgets/QApplication> in ...
- LintCode-35.翻转链表
翻转链表 翻转一个链表 样例 给出一个链表 1->2->3->null ,这个翻转后的链表为 3->2->1->null 挑战 在原地一次翻转完成 标签 链表 优步 ...