leetcode-最长上升子序列LIS
转载原文地址:http://www.cnblogs.com/GodA/p/5180560.html
给定一个无序的整数数组,找到其中最长上升子序列的长度。
示例:
输入:[10,9,2,5,3,7,101,18]输出: 4
解释: 最长的上升子序列是[2,3,7,101],它的长度是4。
说明:
- 可能会有多种最长上升子序列的组合,你只需要输出对应的长度即可。
- 你算法的时间复杂度应该为 O(n2) 。
进阶: 你能将算法的时间复杂度降低到 O(n log n) 吗?
第一种方法:动态规划。
public int longestIncreasingSubsequence(int[] nums) {
if(nums.length==0)return 0;
int[] d=new int[nums.length];
int max=0;
for(int i=0;i<nums.length;i++){
d[i]=1; //当nums[i]之前没有比nums[i]更小的数,d[i]=1.每次重新开始计数
for(int j=0;j<i;j++){
if(nums[j]<nums[i]&&(1+d[j]>d[i]))d[i]=1+d[j];//num[j]<num[i]保证了递增的操作,因此只需要不断比较并更新d[i]
}
if(d[i]>max)max=d[i];
}
return max;
}
第二种方法:有以下序列A[]=3 1 2 6 4 5 10 7,求LIS长度。
class Solution {
public int lengthOfLIS(int[] nums) {
if(nums.length==0)return 0;
int max=0,next;
int[] arr=new int[nums.length];
arr[0]=nums[0];
for(int i=1;i<nums.length;i++){
next=put(arr,0,max,nums[i]); //从数组中的第二个数开始
arr[next]=nums[i];
if(max<next)max=next;
}
return max+1;
}
//找索引的方法,比如【2,1,4,5,3,6】找到nums[1]的索引为0,nums[2]=4直接添加到arr[2]中,nums[3]=5同理,nums[4]=3会把[1,4,5]中的4替换掉。
public int put(int[] a,int l,int r,int key){
if(a[r]<key)return r+1;
int mid;
while(l<=r){
if(l==r)return l;
mid=l+(r-l)/2;
//返回第一个大于key的索引
if(a[mid]<key)l=mid+1;
else r=mid;
}
return l;
}
}
leetcode-最长上升子序列LIS的更多相关文章
- 最长回文子序列LCS,最长递增子序列LIS及相互联系
最长公共子序列LCS Lintcode 77. 最长公共子序列 LCS问题是求两个字符串的最长公共子序列 \[ dp[i][j] = \left\{\begin{matrix} & max(d ...
- 2.16 最长递增子序列 LIS
[本文链接] http://www.cnblogs.com/hellogiser/p/dp-of-LIS.html [分析] 思路一:设序列为A,对序列进行排序后得到B,那么A的最长递增子序列LIS就 ...
- 最长上升子序列LIS(51nod1134)
1134 最长递增子序列 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 给出长度为N的数组,找出这个数组的最长递增子序列.(递增子序列是指,子序列的元素是递 ...
- 动态规划(DP),最长递增子序列(LIS)
题目链接:http://poj.org/problem?id=2533 解题报告: 状态转移方程: dp[i]表示以a[i]为结尾的LIS长度 状态转移方程: dp[0]=1; dp[i]=max(d ...
- 【部分转载】:【lower_bound、upperbound讲解、二分查找、最长上升子序列(LIS)、最长下降子序列模版】
二分 lower_bound lower_bound()在一个区间内进行二分查找,返回第一个大于等于目标值的位置(地址) upper_bound upper_bound()与lower_bound() ...
- 题解 最长上升子序列 LIS
最长上升子序列 LIS Description 给出一个 1 ∼ n (n ≤ 10^5) 的排列 P 求其最长上升子序列长度 Input 第一行一个正整数n,表示序列中整数个数: 第二行是空格隔开的 ...
- 一个数组求其最长递增子序列(LIS)
一个数组求其最长递增子序列(LIS) 例如数组{3, 1, 4, 2, 3, 9, 4, 6}的LIS是{1, 2, 3, 4, 6},长度为5,假设数组长度为N,求数组的LIS的长度, 需要一个额外 ...
- 1. 线性DP 300. 最长上升子序列 (LIS)
最经典单串: 300. 最长上升子序列 (LIS) https://leetcode-cn.com/problems/longest-increasing-subsequence/submission ...
- 最长上升子序列(LIS)模板
最长递增(上升)子序列问题:在一列数中寻找一些数,这些数满足:任意两个数a[i]和a[j],若i<j,必有a[i]<a[j],这样最长的子序列称为最长递增(上升)子序列. 考虑两个数a[x ...
- hdu1025 dp(最长上升子序列LIS)
题意:有一些穷国和一些富国分别排在两条直线上,每个穷国和一个富国之间可以建道路,但是路不能交叉,给出每个穷国和富国的联系,求最多能建多少条路 我一开始在想有点像二分图匹配orz,很快就发现,当我把穷国 ...
随机推荐
- hdu 1026 Ignatius and the Princess I(BFS+优先队列)
传送门: http://acm.hdu.edu.cn/showproblem.php?pid=1026 Ignatius and the Princess I Time Limit: 2000/100 ...
- webapi 获取json数据
一般的我们可以直接使用参数来接受,这个就不多介绍了 [HttpGet] public IHttpActionResult Test2([FromUri]string name) { object ob ...
- linux搭建的LNMP环境下的mysql授权远程连接
用phpstudy搭建的lnmp环境下mysql授权远程连接 简单高效 这是因为mysql 里的优先级不是所有人(提前检查防火墙是关闭状态)1.使用phpstudy安装的mysql没有放置到可以直接调 ...
- 使用docker搭建laravel记叙
第一步,先从dockerhub上pull一个docker镜 docker pull laraedit/laraedit 这个docker镜像已经安装了 nginx.laravel和mysql,所以不需 ...
- hive新手学习随笔
一.回顾 1.hive基于Hadoop的(存储HDFS,计算MR) 2.sql on hadoop概念 ->简化开发的操作 ->提升 ...
- 01 elasticsearch 概念理解
最近在看一套 es 的教学视频,以下笔记主要来自视频资源 Near Realtime(NRT):近实时,先说实时就是数据创建到查询时间在毫秒级或更少: 和实时不一样的是近实时数据在创建到查询最多需要n ...
- C语言学习记录_2019.02.04
逻辑性变量的定义符:bool,在C语言中只有true和false: 定义方式:bool t = true; 逻辑运算符: !:逻辑非 &&:逻辑与 ||:逻辑或 表达区间的错误形式:4 ...
- go包管理工具glide使用方法
golang没有官方最佳管理方案,在go的世界里存在大量的自制解决方案. go语言的包是没有中央库统一管理的,通过使用go get命令从远程代码库(github.com,goolge code 等)拉 ...
- go学习笔记-反射(Reflection)
反射(Reflection) 反射是利用reflect包实现的 反射可大大提高程序的灵活性,使得interface{}有更大的发挥余地 反射使用TypeOf和ValueOf函数从接口中获取目标对象信息 ...
- 北京Uber优步司机奖励政策(2月18日)
滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http://www.cnblogs.com/mfry ...