Keras GRU 文字识别
GRU(Gated Recurrent Unit)是LSTM的一个变体,也能克服RNN无法很好处理远距离依赖的问题。
GRU的结构跟LSTM类似,不过增加了让三个门层也接收细胞状态的输入,是常用的LSTM变体之一。
LSTM核心模块:
这一核心模块在GRU中变为:
CTC网络结构定义:
def get_model(height,nclass):
    input = Input(shape=(height,None,1),name='the_input')
    m = Conv2D(64,kernel_size=(3,3),activation='relu',padding='same',name='conv1')(input)
    m = MaxPooling2D(pool_size=(2,2),strides=(2,2),name='pool1')(m)
    m = Conv2D(128,kernel_size=(3,3),activation='relu',padding='same',name='conv2')(m)
    m = MaxPooling2D(pool_size=(2,2),strides=(2,2),name='pool2')(m)
    m = Conv2D(256,kernel_size=(3,3),activation='relu',padding='same',name='conv3')(m)
    m = Conv2D(256,kernel_size=(3,3),activation='relu',padding='same',name='conv4')(m)
    m = ZeroPadding2D(padding=(0,1))(m)
    m = MaxPooling2D(pool_size=(2,2),strides=(2,1),padding='valid',name='pool3')(m)
    m = Conv2D(512,kernel_size=(3,3),activation='relu',padding='same',name='conv5')(m)
    m = BatchNormalization(axis=1)(m)
    m = Conv2D(512,kernel_size=(3,3),activation='relu',padding='same',name='conv6')(m)
    m = BatchNormalization(axis=1)(m)
    m = ZeroPadding2D(padding=(0,1))(m)
    m = MaxPooling2D(pool_size=(2,2),strides=(2,1),padding='valid',name='pool4')(m)
    m = Conv2D(512,kernel_size=(2,2),activation='relu',padding='valid',name='conv7')(m)
    m = Permute((2,1,3),name='permute')(m)
    m = TimeDistributed(Flatten(),name='timedistrib')(m)
    m = Bidirectional(GRU(rnnunit,return_sequences=True),name='blstm1')(m)
    m = Dense(rnnunit,name='blstm1_out',activation='linear')(m)
    m = Bidirectional(GRU(rnnunit,return_sequences=True),name='blstm2')(m)
    y_pred = Dense(nclass,name='blstm2_out',activation='softmax')(m)
    basemodel = Model(inputs=input,outputs=y_pred)
    labels = Input(name='the_labels', shape=[None,], dtype='float32')
    input_length = Input(name='input_length', shape=[1], dtype='int64')
    label_length = Input(name='label_length', shape=[1], dtype='int64')
    loss_out = Lambda(ctc_lambda_func, output_shape=(1,), name='ctc')([y_pred, labels, input_length, label_length])
    model = Model(inputs=[input, labels, input_length, label_length], outputs=[loss_out])
    sgd = SGD(lr=0.001, decay=1e-6, momentum=0.9, nesterov=True, clipnorm=5)
    #model.compile(loss={'ctc': lambda y_true, y_pred: y_pred}, optimizer='adadelta')
    model.compile(loss={'ctc': lambda y_true, y_pred: y_pred}, optimizer=sgd)
    model.summary()
    return model,basemodel
____________________________________________________________________________________________________
Layer (type)                     Output Shape          Param #     Connected to                     
====================================================================================================
the_input (InputLayer)           (None, 32, None, 1)   0                                            
____________________________________________________________________________________________________
conv1 (Conv2D)                   (None, 32, None, 64)  640         the_input[0][0]                  
____________________________________________________________________________________________________
pool1 (MaxPooling2D)             (None, 16, None, 64)  0           conv1[0][0]                      
____________________________________________________________________________________________________
conv2 (Conv2D)                   (None, 16, None, 128) 73856       pool1[0][0]                      
____________________________________________________________________________________________________
pool2 (MaxPooling2D)             (None, 8, None, 128)  0           conv2[0][0]                      
____________________________________________________________________________________________________
conv3 (Conv2D)                   (None, 8, None, 256)  295168      pool2[0][0]                      
____________________________________________________________________________________________________
conv4 (Conv2D)                   (None, 8, None, 256)  590080      conv3[0][0]                      
____________________________________________________________________________________________________
zero_padding2d_1 (ZeroPadding2D) (None, 8, None, 256)  0           conv4[0][0]                      
____________________________________________________________________________________________________
pool3 (MaxPooling2D)             (None, 4, None, 256)  0           zero_padding2d_1[0][0]           
____________________________________________________________________________________________________
conv5 (Conv2D)                   (None, 4, None, 512)  1180160     pool3[0][0]                      
____________________________________________________________________________________________________
batch_normalization_1 (BatchNorm (None, 4, None, 512)  16          conv5[0][0]                      
____________________________________________________________________________________________________
conv6 (Conv2D)                   (None, 4, None, 512)  2359808     batch_normalization_1[0][0]      
____________________________________________________________________________________________________
batch_normalization_2 (BatchNorm (None, 4, None, 512)  16          conv6[0][0]                      
____________________________________________________________________________________________________
zero_padding2d_2 (ZeroPadding2D) (None, 4, None, 512)  0           batch_normalization_2[0][0]      
____________________________________________________________________________________________________
pool4 (MaxPooling2D)             (None, 2, None, 512)  0           zero_padding2d_2[0][0]           
____________________________________________________________________________________________________
conv7 (Conv2D)                   (None, 1, None, 512)  1049088     pool4[0][0]                      
____________________________________________________________________________________________________
permute (Permute)                (None, None, 1, 512)  0           conv7[0][0]                      
____________________________________________________________________________________________________
timedistrib (TimeDistributed)    (None, None, 512)     0           permute[0][0]                    
____________________________________________________________________________________________________
blstm1 (Bidirectional)           (None, None, 512)     1181184     timedistrib[0][0]                
____________________________________________________________________________________________________
blstm1_out (Dense)               (None, None, 256)     131328      blstm1[0][0]                     
____________________________________________________________________________________________________
blstm2 (Bidirectional)           (None, None, 512)     787968      blstm1_out[0][0]                 
____________________________________________________________________________________________________
blstm2_out (Dense)               (None, None, 5531)    2837403     blstm2[0][0]                     
____________________________________________________________________________________________________
the_labels (InputLayer)          (None, None)          0                                            
____________________________________________________________________________________________________
input_length (InputLayer)        (None, 1)             0                                            
____________________________________________________________________________________________________
label_length (InputLayer)        (None, 1)             0                                            
____________________________________________________________________________________________________
ctc (Lambda)                     (None, 1)             0           blstm2_out[0][0]                 
                                                                   the_labels[0][0]                 
                                                                   input_length[0][0]               
                                                                   label_length[0][0]               
====================================================================================================
Total params: 10,486,715
Trainable params: 10,486,699
模型: 模型包含5500个中文字符,包括常用汉字、大小写英文字符、标点符号、特殊符号(@、¥、&)等,可以在现有模型基础上继续训练。
训练: 样本保存在data文件夹下,使用LMDB格式; train.py是训练文件,可以选择保存模型权重或模型结构+模型权重,训练结果保存在models文件夹下。
测试: test.py是中文OCR测试文件
识别效果:
济南华富锻造有限公司
夺得铜牌后,福民爱流下了激动的泪水。“石川
Itturnedoutthat328girswerenamedAbcdeintheUnitedstates
工程(含训练模型)地址: http://download.csdn.net/download/dcrmg/10248818
Keras GRU 文字识别的更多相关文章
- 图像文字识别(OCR)用什么算法小结
		
说明:主要考虑深度学习的方法,传统的方法不在考虑范围之内. 1.文字识别步骤 1.1detection:找到有文字的区域(proposal). 1.2classification:识别区域中的文字. ...
 - emgucv文字识别
		
今天讲如何通过emgucv中的函数来实现文字识别.总体的过程可以分为以下几步: 1.读取要识别的图片 2.对图片进行灰度变换 3.调用emgu.cv.ocr的类tessract中的recognize方 ...
 - tesseract ocr文字识别Android实例程序和训练工具全部源代码
		
tesseract ocr是一个开源的文字识别引擎,Android系统中也可以使用.可以识别50多种语言,通过自己训练识别库的方式,可以大大提高识别的准确率. 为了节省大家的学习时间,现将自己近期的学 ...
 - 斯坦福第十八课:应用实例:图片文字识别(Application Example: Photo OCR)
		
18.1 问题描述和流程图 18.2 滑动窗口 18.3 获取大量数据和人工数据 18.4 上限分析:哪部分管道的接下去做 18.1 问题描述和流程图
 - 怎么给OCR文字识别软件重编文档页面号码
		
ABBYY FineReader Pro for Mac OCR文字识别软件处理文档时,在FineReader文档中,页面的加载顺序即是页面的导入顺序,完成导入之后,文档的所有页面均会被编号,各编号会 ...
 - 对OCR文字识别软件的扫描选项怎么设置
		
说到OCR文字识别软件,越来越多的人选择使用ABBYY FineReader识别和转换文档,然而并不是每个人都知道转换质量取决于源图像的质量和所选的扫描选项,今天就给大家普及一下这方面的知识. ABB ...
 - 给OCR文字识别软件添加图像的方法
		
ABBYY FineReader 12是一款OCR图片文字识别软件,而且强大的它现在还可使用快速扫描窗口中的快速打开.扫描并保存为图像或任务自动化任务,在没有进行预处理和OCR的ABBYY FineR ...
 - 怎么提高OCR文字识别软件的识别正确率
		
在OCR文字识别软件当中,ABBYY FineReader是比较好用的程序之一,但再好的识别软件也不能保证100%的识别正确率,用户都喜欢软件的正确率高一些,以减轻识别后修正的负担,很多用户也都提过这 ...
 - OCR文字识别软件许可文件被误删了怎么办
		
使用任何一款软件,都会有误操作的情况发生,比如清理文件时一不小心删除了许可文件,对于ABBYY FineReader 12这样一款OCR文字识别软件,因失误错误删除了许可文件该怎么办呢?今天就来给大家 ...
 
随机推荐
- Sublime Text 3 快捷键 一览
			
Sublime Text 3 快捷键精华版 Ctrl+Shift+P:打开命令面板 Ctrl+P:搜索项目中的文件 Ctrl+G:跳转到第几行 Ctrl+W:关闭当前打开文件 Ctrl+Shift+W ...
 - GPL协议本身就是剥削,oracle维权玩的让人恶心
			
我们先来看一下MySQL的版权问题.当前,MySQL采用双重授权(Dual Licensed),他们是GPL和MySQL AB制定的商业许可协议.如果你在一个遵循GPL的自由(开源)项目中使用MyS ...
 - filter方法解析
			
filter一般用于将数组中的某些元素过滤掉,并生成一个新的数组 基本语法如下: var newArray= arrayObj.filter(functionObj); newArray 根据过滤条件 ...
 - 20145217《网络对抗》 MSF基础应用
			
20145217<网络对抗> MSF基础应用 MSF基础应用 1.实践任务 任务一:ms08_067渗透攻击 任务二:IE浏览器渗透攻击--MS12063安全漏洞 任务三:adobe渗透攻 ...
 - iOS字符串处理
			
拼接字符串 NSString* string; NSString* string1, string2; //方法1. string = [NSString initWithFormat:@" ...
 - zabbix安装配置agent程序之agent配置文件详解
			
安装zabbix-agent http://repo.zabbix.com/zabbix/3.2/rhel/6/x86_64/ 下载:zabbix-agent-3.2.0-1.el6.x86_64.r ...
 - Makefile的简单编写【学习笔记】
			
首先我们先创建两个简单的文件: main.c #include <stdio.h> extern void hi_fun(); int main() { printf("hell ...
 - Luogu-1975 [国家集训队]排队
			
Luogu-1975 [国家集训队]排队 题面 Luogu-1975 题解 题意:给出一个长度为n的数列以及m个交换两个数的操作,问每次操作后逆序对数量 时间,下标和数的大小三维偏序,,,把交换操作看 ...
 - Moore majority vote algorithm(摩尔投票算法)
			
Boyer-Moore majority vote algorithm(摩尔投票算法) 简介 Boyer-Moore majority vote algorithm(摩尔投票算法)是一种在线性时间O( ...
 - forever让nodejs后台运行
			
nodejs一般是当成一条用户命令执行的,当用户断开客户连接,运用也就停了,很烦人.如何让nodejs应用当成服务,在后台执行呢? 最简单的办法: $ nohup node app.js 但是,for ...